
Concurrent Programming— Slide Set 5B. Monitors in C & C++ Theodore Norvell

PThreads

In C & C++, one of the most common libraries for

concurrency is called POSIX Threads

(Or PThreads.)

This provided signal and continue style monitors.

Bounded buffer using PThreads

Data Structure

A “mutex” object plays the role of the monitor.

A “condition” objects provide condition queues.

class BoundedBuffer {

private: static int const N = 10 ;

private: int buf[N] ;

private: int front, length ;

private: pthread_mutex_t entryMutex ;

private: pthread_cond_t bufferNotEmpty ;

private: pthread_cond_t bufferNotFull ;

Initialization

Mutex and condition objects must be initialized.

I did this in my constructor.

public: BoundedBuffer() {

pthread_mutex_init(&entryMutex, NULL) ;

pthread_cond_init(&bufferNotEmpty, NULL) ;

pthread_cond_init(&bufferNotFull, NULL) ;

September 20, 2014 1

Concurrent Programming— Slide Set 5B. Monitors in C & C++ Theodore Norvell

front = 0 ;

length = 0 ; }

Destruction

public: ~BoundedBuffer() {

pthread_mutex_destroy(&entryMutex) ;

pthread_cond_destroy(&bufferNotEmpty) ;

pthread_cond_destroy(&bufferNotFull) ; }

Mutual exclusion

Each entry point must explicitely lock and unlock the

monitor

public: void put(int value) {

pthread_mutex_lock(&entryMutex) ;

...

pthread_mutex_unlock(&entryMutex) ; }

Waiting and signalling

public: void put(int value) {

pthread_mutex_lock(&entryMutex) ;

while(length == N)

pthread_cond_wait(

&bufferNotFull,

&entryMutex) ;

assert(length < N) ;

September 20, 2014 2

Concurrent Programming— Slide Set 5B. Monitors in C & C++ Theodore Norvell

buf[(front + length) % N] = value ;

++length ;

pthread_cond_broadcast(&bufferNotEmpty)

;

pthread_mutex_unlock(&entryMutex) ; }

• Because of signal and continue semantics the wait must

happen in a loop.

• Note that the “wait” routine mentions the mutex, this is

because conditions objects are not excplicitly associated

with mutex objects.

• The “broadcast” subroutine is a “signalAll”, all waiting

threads are awakened.

Threads in PThreads

PThreads also provides facilities for creating threads that

share shared memory.

Depending on the implementation, threads may be

• Native threads — known to and scheduled by the OS

• User level threads — not known to the OS. The user

process must arrange for switching the CPU between

threads.

• Nonprememptive threads — GNU Portable Threads

supports cooperative multitasking. There is no actual

concurrency.

September 20, 2014 3

Concurrent Programming— Slide Set 5B. Monitors in C & C++ Theodore Norvell

Only native threads allow you to take advantage of multiple

cores.

September 20, 2014 4

