
Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Distributed Programming
• Processes don’t share memory.
• Processes share channels over which messages are passed
∗ Channels may be
· Global,
· receiver specific,
· or sender & receiver specific.

∗ One or two way.

c°2003,2005 Typeset February 27, 2009 1

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Distributed Paradigms
Filter Data translator— Read input stream, write to output
stream.
Client Active (triggering) process— Request service, often
wait for response.
Server Reactive process— Wait for request, respond.
Peer Cooperating process.jjjjjjj

c°2003,2005 Typeset February 27, 2009 2

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Asynchronous Message Passing

chan c(type1 v1, type2 v2 ...);

send c(x1, x2 ...);

receive c(y1, y2 ...);

empty(c)

• Channels are considered unbounded FIFO queues
• Non-blocking send.
• Blocking receive.
• send and receive generalize V and P by adding data.

Since receive is the only blocking call, deadlock can only
occur there.
Translation:
send c(d) =⇒ hc := concatenate(c, [d])i
receive c(d) =⇒ hawait(¬ empty(c)) d, c := head(c), tail(c)i

c°2003,2005 Typeset February 27, 2009 3

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Filter: Mergesort
Problem: Sort a list of values
Solution: Network filters in a tree structure

process Merge {
int v1, v2;
receive in1(v1);
receive in2(v2);

while (!(v1 == EOS and v2 == EOS)) {
if (v2 == EOS or v1 != EOS and v1 <= v2) {

send out(v1); receive in1(v1); }
else{## v1 == EOS or v2 != EOS and v2 < v1

send out(v2); receive in2(v2); } }
send out(EOS); }

c°2003,2005 Typeset February 27, 2009 4

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Client-Server.
Simulating a monitor using AMP.
• Clients send operation name and parameters and receive

result
• Server receives requests and sends results
• Monitor invariant becomes loop invariant of the server.

process Server() {
declare data
initialize data
while(true) { ## M

receive request(clientID, opKind, parameters)
case(opKind) {
when OP0 { op0 body. Calculate result

send reply[clientID](result) ; }
...
when OPk { opk body. Calculate result

send reply[clientID](result) ; } } }

c°2003,2005 Typeset February 27, 2009 5

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Conditions — Signal and Urgent (LIFO) Wait

Each condition c becomes a queue qc local to the server.

procedure opi() {
W
wait c ;
X

return result; }

procedure opj() {
Y
signal c ;
Z
return result; }

Becomes

case(opKind) { ...
when OPi {
W
qc.insert(clientID) ; }

when OPj {
Y
if(! qc.empty()) {

qc.remove(id) ;
X 0

send reply[id](result0) ; }
Z
send reply[clientID](result) ; }

... }

Considerations
• Local data may have to be put on queue
c°2003,2005 Typeset February 27, 2009 6

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

• Multiple wait(c) in monitor: queue indication of which
wait.

• Multiple signal(c) in monitor: write subroutine for signal.

c°2003,2005 Typeset February 27, 2009 7

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Session-based: client-server
Each client has the undivided attention of a server for as long
as it needs.
Example:

process Server [i = 1 to N] {
while(true) {

int clientID ;
receive openChan(clientID)
send replyChan[clientID](openAck(i))
State serverState := initState ;
do {

Request request ;
receive requestChan[i](request) ;
Reply reply ;
... compute reply and change state...
send replyChan[clientID](reply) ;

} while(...session not over...) ; }
}

c°2003,2005 Typeset February 27, 2009 8

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Interacting Peers: Exchanging Values
Task: Determine the largest and smallest value held by
processes.
Centralized: Coordinator gathers all, and sends results.
• Asymmetric — coordinator does all the work
• 2(n− 1) messages, n channels

Symmetric: Each sends data to all others, receives from all
others, then computes results.
• n(n− 1) messages, 2n channels

Logical Ring: Recv local max, min from prev; Send local
max, min to next; Recv global max, min from prev; Send
global max, min to next.
• 2(n− 1) messages, n channels

c°2003,2005 Typeset February 27, 2009 9

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

AMP in Java – Sockets
• Two-way channels for bytes.
• ServerSocket – allocates a port for the channel.
• Socket – opens a channel on the port.
∗ inputStream
∗ outputStream

(Disclaimer: Don’t take the following code too literally. I’ve
omitted some necessary exception handling.)

c°2003,2005 Typeset February 27, 2009 10

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Multi-session Server

void startSession(final Socket socket) {
Thread sessionThread = new Thread() {

public void run() {
BufferedReader from_client

= new BufferedReader(
new InputStreamReader(

socket.getInputStream()));
PrintWriter to_client = new PrintWriter(

socket.getOutputStream());
... communicate with client
to_client.close();
from_client.close();
socket.close(); } }

sessionThread.start() ; }
...
ServerSocket listen = new ServerSocket(8080);
while(true) {

Socket socket = listen.accept();
startSession(socket) ; }

c°2003,2005 Typeset February 27, 2009 11

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Client

InetAddress serverHost
= InetAddress.getByName(“web.engr.mun.ca”) ;

Socket socket = new Socket(serverHost, 8080);
BufferedReader from_server = new BufferedReader(

new InputStreamReader(
socket.getInputStream()));

PrintWriter to_server = new PrintWriter(
socket.getOutputStream());

... use socket to communicate with server...
from_server.close();
to_server.close();
socket.close();

c°2003,2005 Typeset February 27, 2009 12

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Synchronous Message Passing
• Non-buffered communication
• sync_send blocks until message is received
• Combined communication and synchronization
• Can be viewed as distributed assignment statement.
∗ Often reduces concurrency — sender or receiver waiting.

• More prone to deadlock.

c°2003,2005 Typeset February 27, 2009 13

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

Examples
• Pipelined sieve of Eratosthenes

- First number received, pi, is prime
- From remaining values, pass on only if x%pi 6= 0

• Heartbeat compare and exchange sort
∗ Each of k processes holds n/k data elements
∗ Even rounds:
· if i is even, P[i] sends its largest to P[i + 1], receives

from P[i+ 1] its smallest.
· if i is odd, P[i] sends its smallest to P[i− 1], receives

from P[i− 1] its smallest.
∗ Odd rounds:
· if i is odd, P[i] sends its largest to P[i + 1], receive

from P[i+ 1] its smallest.
· if i is even, P[i] sends its smallest to P[i− 1], receive

from P[i− 1] its largest.

c°2003,2005 Typeset February 27, 2009 14

Concurrent Programming— Slide Set 6. Message passing Theodore Norvell

process HeartBeatSort[i : 0 to k-1] {
...find largest and smallest of local items...

int round := 0 ;
while(...)

if((i+round) is even and i < k-1) {
send c[i+1](largest) ;
receive c[i](largest) ; }

else if((i+round) is odd and i > 0) {
send c[i-1](smallest) ;
receive c[i](smallest) ; }

...recalculate largest and smallest ...
round += 1 ; } }

Termination is a bit tricky. We need to run at least
2(n/k+ k− 1) rounds, but then have to make sure that the last
exchange that each pair makes is not counterproductive.

c°2003,2005 Typeset February 27, 2009 15

