
Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

Remote Procedure Call
• Suited for Client-Server structure.
• Combines aspects of monitors and synchronous message

passing:
∗ Module (remote object) exports operations, invoked with

call.
∗ call blocks (delays caller) until serviced.

• call causes a new thread to be created on remote (server).
• Client-server synchronization and communication is

implicit.

c°2003, 2005 — Typset March 5, 2008 1

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

Terminology / Notation
server module: operations, (shared) variables, local
procedures and threads for servicing remote procedure
calls.
interface (specification): describes the operations, parameter
types and return types.
op opname(param types) [returns return type]
server process: thread created by call to service an operation.
background process: threads running in a module that aren’t
created in response to call.

c°2003, 2005 — Typset March 5, 2008 2

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

Example Server Module

module TicketServer
op getNext returns int ;

body
int next := 0 ;
sem ex := 1 ;

procedure getNext() returns val {
P(ex) ;
val := next ;
next := next + 1 ;
V(ex) ; }

end TicketServer

c°2003, 2005 — Typset March 5, 2008 3

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

Issues
Lookup and registration

How does the client find the server?
Often server registers (binds) with a naming service (registry).
Client obtains information (lookup) about server from this
server.
This changes the question to: How does the client find the
registry?

Synchronization

Synchronization within a module (server). Two approaches:
1. Assume mutual exclusion in server (only one server

process/background process executing at a time).
∗ Similar to monitors.
∗ Still need conditional synchronization.

2. Program it explicitly (i.e., using semaphores, monitors etc.).

c°2003, 2005 — Typset March 5, 2008 4

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

Argument passing

Formats may be different on different machines.
• ints are different sizes, encodings, endianess.
• floats have different encodings

Address space is different in different processes.
• Can not pass pointers.
• Can not pass by reference.
• Can not pass objects containing pointers.

Three solutions:
• Copy-in: Arguments are converted to byte arrays (serializa-

tion) and reconstructed on the other side.
• Copy-in/copy-out: Copy-in + final value is passed back.
• Proxy objects: A proxy object is constructed on the server

side. Calls to the proxy are converted to RPCs back to the
argument.

c°2003, 2005 — Typset March 5, 2008 5

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

Java RMI (Remote Method Invocation)
Client objects and server objects are local to different JVM
processes.
Server objects (usually) extend
java.rmi.server.UnicastRemoteObject.

Lookup and registration

How does the client find the server?
• Server objects registered by name with a registry service.

(Naming.bind)
• Client objects obtain references to proxy objects from the

registry service. (Naming.lookup)

Synchronization

Synchronization within a module (server).
• Each remote call implies the creation of a new server thread.

So if there are multiple clients, there can be multiple server
threads active at the same time.

• Synchronization must be programmed explicitly (use
synchronized or my monitor package)

c°2003, 2005 — Typset March 5, 2008 6

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

Argument passing

Formats may be different on different machines.
• Not an issue as data formats are standard across all Java

implementations.

Address space is different in different processes.
• Reference arguments (and subsidiary references) are

serialized and passed by copy-in rather than by reference.
• Except RemoteObjects, in which case a proxy (‘stub’) is

passed instead (This complicates garbage collection).

c°2003, 2005 — Typset March 5, 2008 7

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

Skeletons and Stubs

• ‘Stub’ objects implement the same interface as the server
objects. (Proxy pattern)

• (0), (5) Client threads call a stub local to their JVM instance.
• (1), (4) Stub messages (TCP/IP) to Skeleton object in

remote JVM & waits for reply.
• (2), (3) Skeleton creates a new server thread which calls the

server.
• Stub and skeleton classes are synthesized by a RMI Com-

piler (rmic).

Client

Stub
(Proxy)

Server

Skeleton

(1)

(0) (2) (3)

(4)

(5)

Call

Return

Message

Network

Object

Process
(JVM)

c°2003, 2005 — Typset March 5, 2008 8

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

Example
Start a registry process

D:\...\classes> rmiregistry -Jcp -J.

First we need an interface for the server

package tryrmi;
import java.rmi.* ;

public interface TicketServerInterface extends Remote
{

public int getTicket() throws RemoteException ; }

c°2003, 2005 — Typset March 5, 2008 9

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

We implement the interface and write a main program to create
and register the server object.

package tryrmi;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class TicketServer
extends UnicastRemoteObject
implements TicketServerInterface {

private int next = 0 ;

public synchronized int getTicket()
throws RemoteException {

return next++ ; }

public TicketServer() throws RemoteException {
super() ; }

c°2003, 2005 — Typset March 5, 2008 10

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

public static void main(String[] args) {
try {

TicketServer server = new TicketServer()
;
String name = args[0] ;
Naming.bind(name, server) ; }

catch(java.net.MalformedURLException e) {
... }

catch(AlreadyBoundException e) { ... }
catch(RemoteException e) { ... } } }

Executing main creates and registers a server object.

D:\...\classes> java -cp . tryrmi.TicketServer
rmi://frege.engr.mun.ca/ticket

The skeleton object will be generated automatically by the
Java Runtime Environment. (There is no need to write a class
for the skeleton object.)
Some client code

package tryrmi;

c°2003, 2005 — Typset March 5, 2008 11

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

import java.rmi.* ;

public class TestClient {

public static void main(String[] args) {
try { String name = args[0] ;

TicketServerInterface proxy =
(TicketServerInterface)

Naming.lookup(name) ;
use proxy object}

catch(java.net.MalformedURLException e) {
... }

catch(NotBoundException e) { ... }
catch(RemoteException e) { ... } } }

The client can be executed from anywhere on the internet. (The
stub object will be created by the Java Runtime Environment.
There is no need to write a class for the stub object.)

D:\...\classes> java -cp . tryrmi.TestClient
rmi://frege.engr.mun.ca/ticket

c°2003, 2005 — Typset March 5, 2008 12

Concurrent Programming— Slide Set 7. RPC and RMI Theodore Norvell

RPC 6= PC
Although remote procedure calls and local procedure calls are
beguilingly similar and in Java share exactly the same syntax,
there are important differences
• Partial Failure
∗ Part of the system of objects may fail
∗ Partial failures may be intermittent
∗ Network delays
· On a large network, delays are indistinguishable from

failures

• Performance
∗ Remote calls are several orders of magnitude more

expensive than local calls (100,000 or more to 1)
• Concurrency
∗ Remote calls introduce concurrency that may not be in a

nondistributed system.
• Semantics changes
∗ In Java, local calls pass objects by reference.
∗ Remote calls pass objects either by copy or by copying a

proxy.

c°2003, 2005 — Typset March 5, 2008 13

