
Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

Rendezvous
Rendezvous provides synchronization and two-way
communication between two threads, a client and a server.
• From the client’s point of view the rendezvous is a procedure

call (remote or local)
• The client blocks until the server executes an in statement

(MPDP) or accept statement (Ada).
• Server blocks until a call is made that it is prepared to

accept.
• Once both are ready
∗ arguments are copied to parameters
∗ code is executed by the server
∗ results are returned and “copy out” parameters are copied

to arguments.
∗ Both threads proceed independently.

c°2003, 2005 — Typset February 17, 2006 1

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

Example

module TicketServer
op getNext returns int ;

body
process daemon {

int next := 0 ;
while(true) {

in getNext() returns val ->
val := next ;

ni
next := next + 1 ;} }

end TicketServer

Note that mutual exclusion is implicit, since the server thread
can be handling but 1 request at a time.

Choice
The server thread can offer a choice of requests that it will
accept and can specify the conditions under which it will
accept a choice.

c°2003, 2005 — Typset February 17, 2006 2

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

module Bounded_buffer
op deposit(char data);
op fetch(result char data);

body

process Buffer {
char buf[n]; # buffer
int front = 0; # first full slot
int count = 0; # number of full slots

while (true) {
in deposit(data) and count < n ->

buf[(front+count)%n] = data ;
count := count+1 ;

[] fetch(data) and count > 0 ->
data := buf[front] ;
front := (front+1)% n ;
count := count - 1 ;

ni } }
end Bounded_buffer

c°2003, 2005 — Typset February 17, 2006 3

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

Rendezvous vs. monitors
The previous example is highly reminiscent of the monitor
solution.
Both provide “structured” approaches to mutual exclusion.
Mutual exclusion is implicit in both monitors and rendezvous.

Passive and active objects

Monitors are passive objects.
• Only client threads exist.
• The client thread performs the service for itself inside the

monitor.
• Server state does not change spontaneously.

Modules containing server threads are active objects.
• The server thread acts on behalf of the client thread within

the module for the duration of the rendezvous.
• Server threads may change the module state in between

calls from clients.

c°2003, 2005 — Typset February 17, 2006 4

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

Data state vs. control state

With active objects, control state as well as data state can
regulate operations that can proceed.

module Buffer
op deposit(char data) ;
op fetch(result char data) ;

body
char buffer ;

process daemon {
while (true) {

in deposit(data) -> buffer := data ; ni
in fetch(data) -> data := buffer ; ni } }

end Buffer

• Acceptance of deposit and fetch strictly alternate.
• 2 states are represented by the program counter.
• Use of control state is sometimes clearer than use of data

state.

c°2003, 2005 — Typset February 17, 2006 5

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

Wait/signal vs. nested “in”

In monitors: a wait can happen at any point service is
suspended until it can resume later.
With rendezvous: once a service has started it can only be
suspended by a nested “in”. Consider:

module Barrier {
op done ;

body

process daemon {
while (true) {

in done() -> in done() -> skip ni
ni ; } }

end Sync2

How would you write an N process barrier?

c°2003, 2005 — Typset February 17, 2006 6

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

Rendezvous vs. (Remote) Procedure Call
Rendezvous provides synchronization and mutual exclusion.
• RPC is handled by a new thread. Mutual exclusion must be

made explicit.
• Rendezvous is handled by a single thread. Hence implicit

mutual exclusion.

Rendezvous vs. Synchronous Message
Passing
As with synchronous message passing the client (sender)
is delayed until the server (receiver) is ready to accept the
communication.
In a degenerate form

in MessType(param) -> local := param ni
rendezvous is a synchronous receive. We abbreviate the above
by

receive MessType(local) ;
Rendezvous adds the ability for the server to

c°2003, 2005 — Typset February 17, 2006 7

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

• delay the client until further processing is done and
• to send information back to client after that processing.

Rendezvous in Ada
The rendezvous is strongly associated with Ada since
• Ada introduced the concept (early ’80s)
• No other major language has supported it.

In Ada
• in is called accept.
• Operations are called entries.
• Choice requires use of select statement.

Conditional acceptance can not depend on parameter values.

c°2003, 2005 — Typset February 17, 2006 8

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

An Ada Example

loop
select when count < n =>

accept deposit(data : in char) do
buf((front+count) mod n) := data ;

end deposit ;
count := count+1 ;

or when count > 0 =>
accept fetch(data : out char) do

data := buf(front) ;
end fetch ;
front := (front+1) mod n ;
count := count - 1 ;

end select ;
end loop ;

c°2003, 2005 — Typset February 17, 2006 9

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

Non-blocking servers and clients (Ada)

The server thread can opt not to block.

loop
select

accept calibration(v : real) do
scale := v ;

end calibration
else

null ; - - do nothing
end select
sensorOut := scale * sensorIn ;

end loop

Likewise, the client can make a conditional call depending on
whether the server is currently prepared to accept it.

select
Queue.deposit(packet) ;

else droppedPacketCount := droppedPacketCount + 1 ;
end select

c°2003, 2005 — Typset February 17, 2006 10

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

Time outs

The server thread may time-out if it blocks too long.
A watch-dog thread

loop
select

accept AllIsWell ;
or delay 10.0 ;

RaiseAlarm ;
end select

end loop

Likewise, the client may time out if service is not sufficiently
fast

select Queue.deposit(packet) ;
or delay 20.0 ;

droppedPacketCount := droppedPacketCount + 1 ;
end select

c°2003, 2005 — Typset February 17, 2006 11

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

Multiple primitives
The SR language (and MPDP) combines RPC, AMP, and
rendezvous into a unified framework.
Client may invoke operation by
• call — synchronous, waits for return
• send —asynchronous, does not wait for reply.

Server may implement operation by
• procedure
∗ New thread is created to handle invocation.
∗ No implicit blocking of client.

• in statement
∗ Existing server thread handles invocation.
∗ Client is blocked until server is ready to accept

Considering all combinations

call send
procedure RPC new thread created
in rendezvous async. mess. pass.

Consider the Bounded_buffer module above.
• A client could either call deposit or send a deposit message
c°2003, 2005 — Typset February 17, 2006 12

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

depending on whether it needs to wait for completion or
not.

• But sending a fetch message would be a problem since it
has an output.
∗We could change fetch to have a semaphore parameter.
∗ The semaphore is Veed when the output is ready.
∗ This idea assumes reference (rather than copy in/copy

out) parameters.
• We could implement deposit and fetch with procedures

rather than an in statement.

c°2003, 2005 — Typset February 17, 2006 13

Concurrent Programming— Slide Set 8 Rendezvous Theodore Norvell

module Bounded_buffer {
op deposit(char data);
op fetch(result char data) ;

body

monitor BufferMon {
...

}

procedure deposit(data) {
BufferMon.deposit(data) ; }

procedure fetch(data) {
BufferMon.fetch(data) ; }

end Bounded_buffer

See MPDP for other interesting examples.
While multiple primitives are a neat idea and provide valuable
insight into the relationships of the various interprocess
communication mechanisms, few languages provide direct
support.

c°2003, 2005 — Typset February 17, 2006 14

