
Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Paradigms for Distributed Process
Interaction
• Manager/Workers (Distributed Bag of Tasks)
• Heartbeat algorithms
• Pipeline Algorithms
• Probe/Echo Algorithms
• Broadcast Algorithms
• Token Passing
• Replicated Servers

c°2003, 2005, 2006. Typeset March 23, 2009. 1

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Manager/Workers (Distributed Bag of
Tasks)
• Central manager process implements bag, hands out tasks

and collects results.
• Workers get tasks and deposit results.
• Essentially client-server.
• Easy to change number of workers (adapt to available

resources).
• If many more tasks than workers, load is balanced effec-

tively.

c°2003, 2005, 2006. Typeset March 23, 2009. 2

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Example: Sparse Matrix Multiplication
Compute

C = A×B
whereA,B, andC are sparse N ×N matrices.
• Each row ofC (= row ofA) is a task.
• First distributeB to all workers.
• Then distribute tasks to workers as the workers become

available.

c°2003, 2005, 2006. Typeset March 23, 2009. 3

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Manager

process Manager {
for[w : 0 to M-1] send worker[w](B) ;
for[w : 0 to M-1] send worker[w](w, A[w]) ;
int done := 0;
int nextRow := M ;
while (done > M) {

int w ; int i ; double R[N] ;
receive manager((w,i,R)) ;
C[i] := R ;
if(nextRow < N) {

send worker[w]((nextRow, A[nextRow])
)
nextRow += 1 ;

else {
send worker[w](-1, *) ;
done += 1 ; } } }

(Could also use a rendezvous or monitor)

c°2003, 2005, 2006. Typeset March 23, 2009. 4

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Worker

process Worker[w : 0 to M-1] {
double B[N][N] ;
receive worker[w](B) ;
while(true) {

int i ; double A[N], C[N] ;
// Receive row i of matrix A.
receive worker[w]((i, A)) ;
if(i == -1) break ;
for[j : 0 to N-1] {

double c := 0.0 ;
for[k : 0 to N-1] c += A[k] * B[k,j] ;
C[j] := c ; }

send manager((w,i,C)) ; } }

c°2003, 2005, 2006. Typeset March 23, 2009. 5

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Heartbeat Algorithms
• Peers cooperate by repeatedly exchanging information.
• Well suited to data-parallel iterative algorithms.
• Each process is responsible for a part of the data.
• New value of an element is dependent on values of

neighbours.
• Each process sends to neighbours, then receives from

neighbours.

process Worker[i = 1 to numWorkers] {
Initialize local variables

while (! done) {
send to neighbours
receive from neighbours
update local variables } }

c°2003, 2005, 2006. Typeset March 23, 2009. 6

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Example: Region Labeling
• Assume binary image. (i.e., image[m,n] where each

element (pixel) is 1 or 0.)
• pixel neighbours are above, below, left and right (not

diagonals).
• We’d like to find label[m,n] s.t. if two neighbours are 1

then they have the same label
• and the number of label values is minimal.
• For SIMD machine, could use one processor per pixel.
• On distributed MIMD architecture it’s best to divide image

into strips or blocks.

c°2003, 2005, 2006. Typeset March 23, 2009. 7

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Iterative Algorithm

for[i : 0 to m-1] {
for[j : 0 to n-1] {

// Put a unique label on each "white" pixel.
if (image[i,j] == 1) label[i,j] := i*n+j; } }

do {
change := false;
for[i : 0 to m-1] {

for[j : 0 to n-1] {
int oldlabel := label[i,j];
if (image[i,j] == 1) {

label[i,j] = max(label for neighbours);
}
if (label[i,j] != oldlabel)

change := true; }
} while(change) ;

c°2003, 2005, 2006. Typeset March 23, 2009. 8

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Heartbeat Algorithm
Each process has a horizontal strip of size “size” of the image
+ 1 row above + 1 row below.
Each process is responsible for updating a corresponding strip
of labels.

initialize the local strip of labels based only on local
information
do {

send label[1,*] up (unless first worker)
send label[size,*] down (unless last worker)
receive label[0,*] (unless first worker)
receive label[size+1,*] (unless last worker)
bool change := false ;
update labels for local strip, computing change.
send change to coordinator
receive change from coordinator

} while(change) ;

c°2003, 2005, 2006. Typeset March 23, 2009. 9

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Termination
• Iterative algorithm terminates when no label changes in an

iteration.
• In distributed algorithm we need to detect when no label

has changed globally – can’t be done locally.
• Central coordinator works, but creates a bottleneck.
• Could use tree or other structure.

c°2003, 2005, 2006. Typeset March 23, 2009. 10

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Heartbeat algorithms have local barriers

R0

R0R0R0

R1

R1R1

R1

R2

R2

R3 R3

R2

R3

R2

R3

P0 P1 P2 P3

Tim
e =

25 units

Heartbeat synchronization
In the example P0 starts round 2 while P3 is
still in round 0. Total time is 25 units.Total
time for full barrier synchronization is 33
units.

c°2003, 2005, 2006. Typeset March 23, 2009. 11

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Pipeline Algorithms
• Each process receives from one process and sends to

another
• Configurations

Open: Endpoints are not connected.
Closed: Coordinator inputs to first and collects results from
last.
Circular: Output from last is input to first.

c°2003, 2005, 2006. Typeset March 23, 2009. 12

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Example: Pipeline Matrix Multiplication
Coordinator (pipeline is closed)
1. send rows ofA to first worker
2. send columns ofB to first worker
3. receive rows ofC, in reverse order, from last worker

Worker
1. receive my row ofA from upstream
2. receive other rows of A from upstream and send them

downstream.
3. receive columns of B from upstream and send them

downstream.
4. Compute inner product.
5. Send my row ofC downstream.
6. Receive other rows of C from upstream and send them

downstream.

c°2003, 2005, 2006. Typeset March 23, 2009. 13

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Matrix Multiplication by Blocks (2D pipeline)
• Arrange processes in grid: process (i, j) calculates C[i, j].
• A values circulate leftward. B values circulate upward.
• In iteration k, process (i, j) multiplies A[i, i ⊕ j ⊕ k] by
B[i⊕ j ⊕ k, j], (⊕ is addition mod n)

• Process (i, j) initially has A[i, i⊕ j] and B[i⊕ j, j]
A[0,0] A[0,1] A[0,2]
B[0,0] B[1,1] B[2,2]
A[1,1] A[1,2] A[1,0]
B[1,0] B[2,1] B[0,2]
A[2,2] A[2,0] A[2,1]
B[2,0] B[0,1] B[1,2]

a = A[i,i⊕j] and b = B[i⊕j,j]
c := a * b;
for [k = 1 to N-1] {

send a left; send b up;
receive a from right; receive b from below;
a = A[i,i⊕j⊕k] and b = B[i⊕j⊕k,j]
c += a * b; }

c°2003, 2005, 2006. Typeset March 23, 2009. 14

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Probe/Echo Algorithms
• Concurrent analog to depth-first-search.
• Distributed computation modeled as a graph.
∗ Process = Node
∗ Channel = Edge

• Processes communicate only with their neighbours (assume
bidirectional).

c°2003, 2005, 2006. Typeset March 23, 2009. 15

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Broadcast — Probe Algorithm
• Node S wants to send a message m to all other nodes in a

graph.
• Spanning Tree:
∗ Assume S knows a spanning tree, t rooted at S.
∗ Send m and t to each child in t.
∗ Each node forwards m only to children in t.
∗ m received once and only once by each other process.

• Neighbour-set:
∗ Each node only knows its own neighbours.
∗ S sends m to all its neighbours.
∗When node receives m it forwards it to all of its

neighbours (including originator).
∗ Every nodes receives from and sends to every neighbor.
∗ Thus each node can expect to receive the same message
deg(n) times.

c°2003, 2005, 2006. Typeset March 23, 2009. 16

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Discover Topology — Probe/Echo Algorithm
• Initially each node only knows about its neighbours.
• If network is an undirected tree
∗ S sends probe to all neighbors.
∗ Other nodes, upon receiving probe send probe to all other

neighbors.
∗ Leaf replies (echo) with it’s neighbour-set filled in.
∗When node has received echo for each probe, it merges

neighbor-sets and replies to its parent.
∗When S receives echo from all its children, then it knows

the full topology.
• For general connected graph:
∗ S sends probe to all neighbors.
∗ On first probe received: probe is resent to all neighbours.
∗ On subsequent probe: echo with null graph (∅,∅).
∗ Number of echoes expected at each node = number of

probes sent.
∗ Once all echoes received: union of all information known

and (except S) reply to first prober

c°2003, 2005, 2006. Typeset March 23, 2009. 17

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

S

The first probe to arive

Subsequent probes*

* The original sender, S, considers
all probes to be subsequent.

Node S wants to learn the
topology.

S sends probes to all its
neighbours
When a node other than S
receives its first probe it
sends probes to all its
neighbours.
Thus the first pobes to
arrive form a tree and each
node "knows" what its
parent is.
But nodes do not yet
"know" which their children
are and the leaves do not
"know" they are leaves.
Every node, n, will receive
deg(n) probes.

S

When a node receives a
subsequent probe it immediately
sends back a "dummy echo"
containing no useful information.
A leaf, n, will get deg(n) dummy
echoes

S

Once a node, n, has received deg(n)
echoes, it echoes its parent with
useful information collected from itself
and its children.
Note the order of these echoes is
bottom up.

Dummy echo Echo to first probe to arrive

c°2003, 2005, 2006. Typeset March 23, 2009. 18

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Broadcast Algorithms
Many networks support a broadcast primitive. We assume:
• Each process receives one copy of a broadcast message

(including originator).
• Broadcasts are received on the same channel(s) as point-to-

point messages.
• Broadcasts from the same process will be received in the

order that they were sent.
• Broadcast is not atomic – processes may receive messages

in different order.

c°2003, 2005, 2006. Typeset March 23, 2009. 19

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Logical Clocks
Consider each process as a sequence of events including the
sending and receiving of messages.
If every thread had a perfectly synchronized real-time clock
we could assign a total order on events.
But such synchronization is not feasible in a distributed
system.
Events: a, b, c, ...
Consider an ordering relation a → b meaning a happened
before b. Define it as the smallest relation such that
• If a and b are in the same thread and a precedes b in that

thread, then a→ b.
• If a is a sending of a message and b is the receiving of the

same message then a→ b.
• If a→ b and b→ c then a→ c

A logical clock is a mapping C from events to integers such
that
• For all a and b, if a→ b then C(a) < C(b)

c°2003, 2005, 2006. Typeset March 23, 2009. 20

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

A logical clock provides an order in which events “could have
happened”
We can think of the global state of the system at time i as
consisting of the states of the processes and channels after all
events a, with C(a) < i, have happened.

Implementing a logical clock
We can implement a logical clock as follows.
Each process has a local “logical clock” variable lc.
lc is incremented after each event occurs. For internal events

a
Ã

a
C(a) := lc ;
lc += 1 ;

We append a “timestamp” to each message.
A send event a is implements as

a : send ch(m) ;
Ã

send ch(m,lc) ;
C(a) := lc ;
lc += 1 ;

And a receive event a is implemented by
c°2003, 2005, 2006. Typeset March 23, 2009. 21

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

receive ch(m) ;
Ã

int ts ;
receive ch(m,ts) ;
lc := max(lc, ts+1) ;
C(a) := lc ;
lc += 1 ;

c°2003, 2005, 2006. Typeset March 23, 2009. 22

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Logical Clocks Example

1
2

1

3

45

6

3

4

5 7

8
8

1
2

1

3

4

5

6

3

4

5

7

8 8

c°2003, 2005, 2006. Typeset March 23, 2009. 23

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Breaking ties
Note that C(a) ≤ C(b) is only a partial order on events as
C(a) = C(b) is possible even if a 6= b.
In some applications we need a total order. We can use the
process number to break ties. I.e. if P (a) is the number of the
process that a occurs in then

C(a) < C(b) ∨ (C(a) = C(b) ∧ P (a) < P (b))

is a total order.

Using timestamps to ensure information is up
to date.
If we assume that all send events on a given channel are only
from one process.
• if process p has received a message on channel c with a time

stamp of t no future message on c will have a time stamp of
< t

• So if p has received a message from all its incoming
channels with a time stamp of t or more then no future
message will have a time of < t

c°2003, 2005, 2006. Typeset March 23, 2009. 24

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Example: Distributed Semaphores
Each process pi communicates only with a handler process hi.
• pi sends hi VREQ and PREQ messages.
• hi sends pi GO messages.
• V operation is : send VREQ to hi
• P operation is : send PREQ to hi ; receive GO from hi.

Distributed processes implement semaphore-style
synchronization without a central coordinator.
• The handler hi communicate with each other with broad-

casts of
∗ (i, POP, ts) — when it gets a PREQ
∗ (i, VOP, ts) — when it gets a VREQ
∗ (i, ACK, ts) — when it gets a POP or VOP.

• Each handler maintains:
∗ a logical clock, lc,
∗ a queue, mq, of received POP or VOP messages, sorted

by msg timestamp (sender’s pid used to break ties), and
∗ a local int value for the semaphore, s.
∗ (For all c) When a process has some received message

c°2003, 2005, 2006. Typeset March 23, 2009. 25

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

from all other processes with ts > c, then all messages
in mq with ts ≤ c are fully acknowledged.

• Fully acknowledged messages in mq form a stable prefix —
this process can never see a message that will be inserted in
that part.

• When POP or VOP message is received, broadcast an
acknowledgment — used by other processes to ensure that
operation is fully acknowledged.

• When ACK is received, update stable prefix:
∗ for VOP — increment s, delete msg.
∗ for POP — if s > 0, decrement s, delete msg.
· If the POP was from i send a GO message.

• Doesn’t scale well:
∗ every process is involved in every synchronization,
∗ n2 messages per P or V,
∗ doesn’t tolerate communications failures.

c°2003, 2005, 2006. Typeset March 23, 2009. 26

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Example

p0

h0

h1h2 p1p2

VREQ
PREQ

VREQ
PREQ

VREQ
PREQ

GO

GO

GO

(i,POP,ts)
(i,VOP,ts)
(i,ACK,ts)

Suppose there are three processes {p0, p1, p2} and three helpers
{h0, h1, h2}.
Let’s consider h0. Initially s = 0, lc = 0,mq = hi .
• Receive PREQ from p0

• Broadcast (0, POP, 0), lc := 1
• Receive (0, POP, 0), lc := 2, mq := h(0, POP, 0)i
• Broadcast (0, ACK, 2) , lc := 3
• Receive (0, ACK, 2), lc = 4

• Receive (1, POP, 0) , lc = 5,mq := h(0, POP, 0) , (1, POP, 0)i
c°2003, 2005, 2006. Typeset March 23, 2009. 27

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

• Broadcast (0, ACK, 5) , lc := 6

• Receive (1, ACK, 4) , lc := 7

• Receive (2, ACK, 3) , lc := 8

At this point both messages in mq are fully acknowledged.
However, as s = 0, both messages are blocked.
• Receive

(2, V OP, 6) , lc := 9,

mq :=
D
(0, POP, 0) , (1, POP, 0), (2, V OP, 6)

E
• Broadcast (0, ACK, 9) , lc := 10

• Receive (1, ACK, 8) , lc := 11

At this point all messages in mq are fully acknowledged.
We repeatedly process the stable prefix from left to right,
skipping blocked messages, until all messages in the stable
prefix are blocked.
• mq :=

D
(0, POP, 0) , (1, POP, 0)

E
, s := 1

• mq :=
D
(1, POP, 0)

E
, s := 0

• Send (GO) to p0

c°2003, 2005, 2006. Typeset March 23, 2009. 28

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Token-Passing Algorithms
Token — a special message used to convey permission or
gather global state information.
Distributed Mutual Exclusion
Helper processes
• connected in a (logical) ring
• continuously pass the token around the ring
• when user requests CS
∗ wait for the token
∗ hold token while user in CS

“On-demand” Distributed Mutual Exclusion Method
Helper processes
• when user i requests CS
∗ helper i sends request counterclockwise
∗ when the request reaches the token holding process, it

waits until it is not in CS then sends the token clockwise
∗ when the token reaches a requesting process it is held

c°2003, 2005, 2006. Typeset March 23, 2009. 29

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Termination Detection
How to determine if a distributed computation is terminated?
Assuming one-way ring structure (all messages on ring,
all work results from messages, messages do not cross in
channel):
• There is one token.
• A process is considered idle when it is waiting for a message

or terminated.
• When a process:
∗ becomes idle and has the token, it passes the token;
∗ is active and receives the token, it keeps the token;
∗ is idle and receives the token, it passes the token;
∗ receives the token and has been continuously idle since it

last sent it, then computation is done:
· no messages are in transit
· every other process must be idle

• Once one process knows the computation is over, it can
broadcast this fact.

c°2003, 2005, 2006. Typeset March 23, 2009. 30

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

What about if network isn’t a ring?
• Construct a cycle, C, that includes every edge in the network

(nc = length of C).
• Add a counter to the token.
• Processes have “colour”: blue = idle, red = active, initially

red.

On receiving a regular message:

colour := red

On receiving the token

if (token >= nc) halt
else {

if (colour == red) {
colour := blue;
token := 0; }

else
token++;

send token along the next edge in C }

c°2003, 2005, 2006. Typeset March 23, 2009. 31

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

The token makes one circuit to turn all processes blue and
another to verify they are still all blue

c°2003, 2005, 2006. Typeset March 23, 2009. 32

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Replicated Servers
Multiple processes, each acting as a server.
• To manage distinct instances of a resource, or
• to give illusion of a single resource.

Dining Philosopher’s revisited
Consider adding Waiter(s) to manage the forks
Centralized: One waiter controls all the forks.
Distributed: One waiter per fork. (Requires asymmetry or
preemption to avoid deadlock.)
Decentralized: One waiter per philosopher. Adjacent waiters
share 1 fork.

c°2003, 2005, 2006. Typeset March 23, 2009. 33

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Hygienic Philosophers (Decentralized)
• Five philosophers, five waiters, five forks
∗ pi −→ wi : hungry (when ready to eat)
∗ wi −→ pi : eat (when waiter has 2 forks)
∗ pi −→ wi : release (when finished eating)

• Each fork is a token, held by one of two adjacent waiters
(or in transit).
∗ wi −→ wi+1 : needL (when waiter i needs its right fork)
∗ wi+1 −→ wi : passR (passes i its right fork)
∗ wi −→ wi−1 : needR (when waiter i needs its left fork)
∗ wi−1 −→ wi : passL (passes i its left fork)

• Need to avoid livelock (ping-ponging)
∗ After waiter acquires a fork, it won’t give it up until the

philosopher has used it at least once.
∗ Implementation: Each fork is marked dirty or clean
· Forks are clean when they arrive.
· Forks become dirty when the philosopher eats.
· Only dirty forks are passed

c°2003, 2005, 2006. Typeset March 23, 2009. 34

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

• Example: (◦ clean, • dirty)
∗ Initial state (from 0 to 4) (•|•)(|•)(|•)(|•)(|)
· p4 −→ w4 : hungry .
· w4 −→ w0 : needL.
· w4 −→ w3 : needR.
· w0 −→ w4 : passR. Now 4 has 1 fork. (|•)(|•)(|•)(|•)(|◦)
· p0 −→ w0 : hungry .
· w0 −→ w4 : needR. Since the fork is clean, w4 won’t

give it up.
· w3 −→ w4 : passL. Now 4 has 2 forks.
(|•)(|•)(|•)(|)(◦|◦)
· w4 −→ p4 : eat . Philosopher eats.
· p4 −→ w4 : release. (|•)(|•)(|•)(|)(•|•)
· w4 −→ w0 : passL. Now request can be honoured.
(◦|•)(|•)(|•)(|)(•|)

c°2003, 2005, 2006. Typeset March 23, 2009. 35

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Deadlock
• Since a clean fork can’t be passed and both forks

must be at the same waiter to become dirty, the state
(|◦)(|◦)(|◦)(|◦)(|◦) is deadlocked.
∗ But from state (•|•)(|•)(|•)(|•)(|) one can’t reach a state
(|◦)(|◦)(|◦)(|◦)(|◦) nor (◦|)(◦|)(◦|)(◦|)(◦|)
∗ Challenge: Figure out why.

• Freedom from starvation.
∗ Once the fork is dirty, the waiter is generous with it.
∗ Priority is to other philosopher.
∗ Thus a philosopher waits only until its neighbors have

finished eating.

c°2003, 2005, 2006. Typeset March 23, 2009. 36

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Decentralized File Server
One process has the file (token). Complete connection graph
of servers.
When a server wants access to a file, it asks for the token.
The token will only be passed when the client is finished.
Priority goes to the server that had the token least recently.
Can be extended to allow read-only copies.
• If a file is open for reading, then a copy of the file (but not

the token) can be passed immediately.
• If the requesting server already has a valid copy, then that

can be used.
• When the file is later opened for writing, all copies must

first be invalidated.

(Similar system can be used for cache coherency)

c°2003, 2005, 2006. Typeset March 23, 2009. 37

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Object Replication
Extreme case
• All servers holding replica are involved in each write.
• Any server can be used for reading

General case. WQ̇ > N/2 is the write quota. RQ > N−WQ
is the read quota.
• N servers hold replicas
• At least WQ servers are involved in each write operation.
• Each write is time stamped (logical clocks)
• At least RQ servers are required for first read.
• The value with the latest time stamp wins.
• One advantage is that the system still works when N−WQ

servers are down.

c°2003, 2005, 2006. Typeset March 23, 2009. 38

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Object Replication (Example)
N = 10, WQ = 7, RQ = 4.
• Initially, the value is 42 with timestamp of 0. All servers

have a copy.
• Server 0 wants to write a value of 13. It must recruit 6 other

servers.
∗ Server 0 recruits servers 1 thru 6 (since WQ = 7)
∗ All 7 change the value to 13 with time stamp 1.

• Server 9 wants to read. It must recruit 3 other servers.
∗ It recruits servers 6, 7, 8
∗ Servers 7, 8, 9 reports the value is 42, but 6 reports it is
13.
∗ The value 13 wins because of its time stamp.

c°2003, 2005, 2006. Typeset March 23, 2009. 39

Concurrent Programming— Slide Set 9 Paradigms for Distributed processing. Theodore Norvell

Object Replication — Deadlock
As you can see, recruitment could deadlock if one is not
careful.
Consider: N = 10, WQ = 7.
• If server 0 wants to write and recruits 1 thru 4
• and server 9 wants to write are recruits 5 thru 8,
• then we are deadlocked, unless there is some way for a

server to unrecruit itself.
∗ (which creates many more complications)

• Simple solution: Always recruit in ascending order.

c°2003, 2005, 2006. Typeset March 23, 2009. 40

