
1

1

Remote Method Invocation
(RMI) and Distributed

Observers in Java
Theodore Norvell

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 2

The Proxy Pattern

SubjectInterface

operation()

<<Interface>>
Client

setSubject(x : SubjectInterface)

ProxyClass Subject

The Client object uses its subject via an interface
Thus it may be used with a real subject or with a
proxy object which represents the subject.

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 3

The Proxy Pattern

The client
calls the
proxy,
which
forwards
the call
(somehow)
to the
actual
subject.

someObject : Client p : ProxyClass : Subject

operation()

operation()

setSubject(p)

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 4

RMI and the Proxy pattern

RMI uses the Proxy pattern to distribute
objects across a network.
Recall that in the Proxy pattern a proxy and a
subject share a common interface.
In RMI, objects call methods in a proxy (aka
stub) on its own machine

The proxy sends messages across the network to
a “skeleton” object
The skeleton calls the subject object.

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 5

One Remote Method Call.

(0) Client calls stub
(1) Stub messages

skeleton
(2) Skeleton calls

server (subject)
(3) Call returns
(4) Skeleton

messages
proxy

(5) Call returns

Client

Stub
(Proxy)

Server

Skeleton

(1)

(0) (2) (3)

(4)

(5)

Call

Return

Message

Network

Object

Process
(JVM)

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 6

Issues
Concurrency

If there are multiple clients, the server may field multiple
calls at the same time.

So use synchronization as appropriate.
Argument passing

Arguments are passed by value or “by proxy” not by
reference.

Proxy and Skeleton generation
Proxy and Skeleton classes are automatically derived from
the server class (program rmic)

Lookup
Objects are usually found via a registry (program
rmiregistry)

2

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 7

Nitty-Gritty
The proxy and the server share an interface.

This interface must extend java.rmi.Remote.
Every method in the interface should be declared to throw
java.rmi.RemoteException
RemoteExceptions are thrown when network problems are
encountered,
or when server objects no longer exist.

The server typically extends class
java.rmi.server.UnicastRemoteObject

The constructor of this class throws a RemoteException
Therefore, so should the constructor of any specialization.

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 8

Argument Passing Revisited
Most arguments and results

are converted to a sequence of bytes;
the bytes are sent over the net
therefore the class should implement the
java.io.Serializable interface
a clone of the argument/result is constructed on the other
side.
The effect is pass by object value, rather than by object
reference.

But
objects that extend java.rmi.server.RemoteObject
instead have a proxy constructed for them on the other side
I call this “pass by proxy”. Essentially pass by reference

So each argument, result, exception type should be
a primitive type, Serializable, or extend RemoteObject

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 9

An Example – Distributed Othello

Othello is a two person board game
It uses the observer pattern so that,

when the (game state) model changes,
all observers are informed of the change.

I wanted to put the model on one machine
and the observers on other machines.
Hence I implemented the observer pattern
with RMI.
This is example othello-2 on the website.

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 10

The Observer Pattern

Subject alerts Observers of changes of state.

notifyObservers:
 for all o in Observers
 o.update()

Observer

update()

Observable

addObserver(Observer)
removeObserver(Observer)
notifyObservers()

0..*0..*

Subject

getState()
setState()

ConcreteObserver

update() -subject

update:
 ...
 subject.getState()
 ...

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 11

Observer Pattern
obj : Subject : ConcreteObserver : ConcreteObserver

setState()
notifyObservers()

update()
getState()

update()

getState()

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 12

Conceptual Model for Othello

:DoubleBufferedView

:Animator

: DoubleBufferedView

:Animator

:RemoteGameModel

Client Host 0 Client Host 1

Server Host

Observes Observes

ObservesObserves

3

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 13

Detailed View
: DoubleBufferedView

:Animator

:RemoteGameModel

Client Host 0

Observes

Skeleton Animator Proxy

Skeleton

Remote Game Model’s Proxy

Observes

Communicates with

Communicates with

notifies
Server
Host

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 14

The Observer Pattern in Othello

RemoteConcurrentObserver

update()

(from observation)

<<Interface>> RemotelyConcurrentlyObservable

RemotelyConcurrentlyObservable()
addObserver()
notifyObservers()

(from observation)

RemoteGameModelInterface

getGameState()
getPieceAt()
move()

(from model)

<<Interface>>

RemoteGameModel
(from model)

Animator

update()

(f rom view)

0..*0..*

-gameModel

Observer
Subject

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 15

Proxies for the Remote Game Model

Remote
(f rom rmi)

<<Interface>>UnicastRemoteObject
(from server)

RemoteGameModel
(from model)

RemoteGameModel_Stub
(from model)

<<communicate>>

Animator

update()

(from view)

RemoteGameModelInterface

getGameState()
getPieceAt()
move()

(from model)

<<Interface>>

-gameModel

Client

Subject

Generated
Proxy Class

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 16

Proxies for the Animator

Remote
(from rmi)

<<Interface>>
UnicastRemoteObject

(from server)

RemotelyConcurrentlyObservable

RemotelyConcurrentlyObservable()
addObserver()
notifyObservers()

(from observation)RemoteConcurrentObserver

update()

(from observation)

<<Interface>>

0..*0..*

Animator

update()

(from view)
Animator_Stub

update()

(f ro m view)<<communicate>>

Client

Generated
Proxy

Subject

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 17

Animator / RemoteGameModel Relationship

Remote
(from rmi)

<<Interface>> UnicastRemoteObject
(f rom server)

RemotelyConcurrentlyObservable

RemotelyConcurrentlyObservable()
addObserver()
notifyObservers()

(from observation)RemoteConcurrentObserver

update()

(f ro m ob serva ti on)

<<Interface>>

0..*0..*

RemoteGameModel
(from model)

RemoteGameModel_Stub
(from model)

<<communicate>>

RemoteGameModelInterface

getGameState()
getPieceAt()
move()

(from m od el)

<<Interface>>

Animator

update()

(from view)

-gameModel

Animator_Stub

update()

(from view)

<<communicate>>

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 18

Typical sequence (slightly simplified).

A remote client calls a synchronized mutator on the
RemoteGameModel via its stub & skeleton

The RemoteGameModel updates its state and notifies each
Animator via its stubs & skeletons.

The Observers (Animator objects) call the RemoteGameModel
accessor “getPieceAt” via its stubs and skeleton.
(Therefore this accessor must not be synchronized!)
getPieceAt returns

The update routines return.

The original mutator call returns and the
RemoteGameModel becomes unlocked.

4

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 19

Concurrent Notification
The previous sequence is slightly simplified.

In fact the Animators return from update
immediately (so that all can be informed
essentially at the same time).

The Animation threads will inform the
RemoteGameModel of when they have completed their
animation.

The RemoteGameModel waits until it has been
informed that all animations are complete.

The effect is that the animations can happen
concurrently, yet the RemoteGameModel does not
unlock until all animations are complete and all models
agree on the board state.
See RemotelyConcurrentlyObservable for details.

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 20

Finding the Server
Normally an object’s address serves as a unique
identifier

But this only makes sense in the context of a given JVM
process.
We would like objects to have unique identifiers that are
unique in the world.
The rmiregistry allows you to give a URI to an object
And to obtain a proxy for an object that has a URI.
URIs are: rmi://host/name
The host must be running a rmiregistry process and that
process should have the appropriate class files on its
CLASSPATH

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 21

Finding the Server (cont.)

The main routine for the server
The static method bind in Naming gives a URI to
gameModel
public static void main(String[] args) {

try {
RemoteGameModel gameModel = new RemoteGameModel();
String name = args[0] ;
Naming.bind(name, gameModel) ;
System.err.println("Game model bound to "+name);}

catch(java.net.MalformedURLException e) { … }
catch(AlreadyBoundException e) { … }
catch(RemoteException e) { … } }

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 22

Finding the Server (cont.)

The clients obtain a proxy for the game model using
Naming.lookup(URI)
From ClientMain.java

public static void main(String[] args) {
RemoteGameModelInterface proxy = null ;
try {

String name = args[0] ;
proxy = (RemoteGameModelInterface)

Naming.lookup(name) ; }
catch(java.net.MalformedURLException e) { … }
catch(NotBoundException e) { … }
catch(RemoteException e) { … }

… conintued on next slide…

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 23

Finding the Server (cont.)
The client then can use the proxy. E.g.

Continuing the ClientMain main routine
…
Animator animator0 = null ;
try {

animator0 = new Animator(proxy) ; }
catch(RemoteException e) { … }

The constructor for Animator
public Animator(RemoteGameModelInterface gameModel)
throws RemoteException {

super() ;
…
gameModel.addObserver(this); }

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 24

Hooking up the Observer.

Each Animator calls addObserver(this) on the
RemoteGameModel’s proxy.

Since Animator extends RemoteObject, it is
passed by proxy, meaning
a proxy for the Animator is constructed in the JVM
of the RemoteGameModel.
This allows the game model to call-back to the
Animators to notify them of any changes to the
game’s state.

5

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 25

The final hookup (again)

:Animator

:RemoteGameModel

Client Host 0

Observes

Skeleton Animator Proxy

Skeleton

Remote Game Model’s Proxy

Communicates with

Communicates with

notifies
Server
Host

calls

calls

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 26

Creating the stubs and skeletons
First we write a server class: E.g.

public class RemoteGameModel
extends RemotelyConcurrentlyObservable
implements RemoteGameModelInterface

{
public RemoteGameModel() throws RemoteException {

super() ; } … }
We compile it with “javac”
Then we use the command “rmic”

D:\othello-2> cd classes
D:\othello-2\classes> rmic othello.model.RemoteGameModel

This creates two new “.class” files
D:\othello-2\classes> dir othello\model
28-03-2003 01:29 2,672 RemoteGameModel_Skel.class
28-03-2003 01:29 5,033 RemoteGameModel_Stub.class
…

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 27

A Few Words of Warning

RMI makes it seductively easy to treat remote
objects as if they were local.
Keep in mind

Partial Failure
Part of the system of object may fail
Partial failures may be intermittent
Network delays
On a large network, delays are indistinguishable from
failures

In the Othello example, failure was not considered. The
system is not designed to be resilient to partial failures.

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 28

A Few Words of Warning (cont.)

Keep in mind (cont.)
Performance

Remote calls are several orders of magnitude more
expensive than local calls (100,000 or more to 1)

E.g. in the Othello example, this motivated splitting the
model into local and remote copies.

Concurrency
Remote calls introduce concurrency that may not be in a
nondistributed system.

E.g. in Othello, I had to be careful not to use synchronized
for accessors called by remote Observers and to consider
the data integrity consequences of not doing so.

© 2004 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 29

A Few Words of Warning (cont.)

Keep in mind (cont.)
Semantics changes

In Java, local calls pass objects by reference.
Remote calls pass objects either by copy or by copying
a proxy.

E.g. in the Othello game as I converted from the
nondistributed to a distributed version, the semantics of
some calls changed, even though I did not change the
source code for those calls.

