
Radical Algorithmics

Theodore S Norvell
Electrical and Computer Engineering

Memorial University

Written around 2005. Revised December 2010. Typeset
December 26, 2010.

The natural root of a natural number x is the largest natural number
not larger than the square root of x, that is �√x�. The problem is: given a
natural number x, find �√x�.

1 Pencil and paper method

Here is a pencil and paper algorithm taught to me by Eric Gill who learned
it from his father. I’ll use x0 to represent the original value of x. (Although
you don’t see it in this section, in the next section I will treat x as a program
variable, so its value will change.)

1. Start with the most significant digit of x0, if x0 has an odd number of
digits, or the two most significant digits of x0, if x0 has an even number
of digits.

2. Find the natural root of this one or two digit number. Call it a. Here is
an example. x0 is 12345678. The first two digits are 12 and the natural
root of that is 3.

a→ 3

x0 → 12 34 56 78

3. Take the square of a and subtract it from the one or two digit number

1

giving z
a→ 3
x0 → 12 34 56 78

9

z → 3

4. If there are no digits of x0 remaining to be considered, then stop. The
root is a.

5. Take the next two digits from x0 and append them to z to make a
number y

a→ 3
x0 → 12 34 56 78

9 ↓↓
y → 334

6. Add a to itself to get 2a and then append a single digit b to that to
make 20a + b. Call this number w. But how do you know what b is?
Pick b as the largest integer b such that bw (i.e. 20ab + b2) does not
exceed y. (It happens that b can not be greater than 9). Usually you
can just divide y by 20a to get b, since 20a is close to w. In the example,
334 divided by 60 (a times 20) is 5, and we then check that 5×65 = 325
is not greater than 334. It is not, so b = 5 and w = 20 × 3 + 5 = 65.
Tack the digit b onto the end of a and write bw under y.

a→ 3 5

x0 → 12 34 56 78
9

y → 3 34
bw = 5× (20× 3 + 5)→ 3 25

7. Subtract bw from y to get a new value for z.

a→ 3 5
x0 → 12 34 56 78

9
y → 3 34
bw → 3 25
z → 9

2

8. Go back to step 4.

The example continues with two more iterations. The second iteration
finds the next digit to be 1.

a→ 3 5 1

x0 → 12 34 56 78
9 ↓↓
3 34
3 25
9 56

1× (20× 35 + 1)→ 7 01

z → 2 55

The final iteration finds the final digit to be 3.

a→ 3 5 1 3

x0 → 12 34 56 78
9 ↓↓
3 34
3 25
9 56
7 01
2 5578

3× (20× 351 + 3)→ 2 10 69

z → 45 09

You can continue this process to obtain more decimal places. I’m going
to ignore the possibility and just stop once the integer part is obtained.

2 Deriving the algorithm

2.1 Two observations

The first observation is that you can find all the digits of the answer except
the last while ignoring the last two digits of the input.
One way to see this is to consider the function

⌊√
t
⌋
as a function of

nonnegative real numbers. As t increases, the value of the function only
increases when t is a perfect square and hence an integer. This means that

3

is the same as
⌊√

�t�
⌋
, as otherwise the function would have to take a step

somewhere after �t� but before or at t, and none of these values is an integer.
Now consider any natural x. Using the result of the last paragraph we

have ⌊√
x/10

⌋
=
⌊√

x/100
⌋
=
⌊√

�x/100�
⌋
=
⌊√
x div 100

⌋

Let
√
x = 10a+β, where a is an integer and β is a real number, 0 ≤ β < 10.

We have �√x/10� =
⌊
a+ β

10

⌋
= a. All together we have a = �√x/10� =⌊√

x div 100
⌋
. Thus is, if we can find a =

⌊√
x div 100

⌋
, we can rest assured

that
√
x will be of the form

√
x = 10a + β, where β is a real number,

0 ≤ β < 10, and thus that �√x� = 10a + b where b = �β� is an integer
0 ≤ b < 10. So, having computed

⌊√
x div 100

⌋
, you have all but the last

digit of �√x�.
The second observation is that once you know all but the last digit, the

last digit is easy to find. Suppose we know �√x� is of the form 10a+ b, with
a and b naturals and 0 ≤ b < 10. First consider the case where x is a square;
we have

x = (10a+ b)2 = 100a2 + 20ab+ b2 = 100a2 + b(20a+ b)

Let y = x− 100a2 then we have y = b(20a+ b). If we know a, it remains to
find that b such that y = b(20a+ b).
Now if x is not known to be a perfect square, we can’t be sure that a b

such that y = b(20a + b) will exist. If we instead find the largest integer b
such that y ≥ b(20a+ b), then we can show the following two facts: First

(10a+ b)2

= 100a+ 20ab+ b2

= 100a+ b(20a+ b)

≤ 100a+ y

= x

Taking the root of both sides we have (10a+ b) ≤ √x. Second, since b is the
largest integer such that y ≥ b(20a+ b), we know (b+ 1)(20a+ (b+ 1)) > y,

4

and so

(10a+ b+ 1)2

= 100a+ 20a(b+ 1) + (b+ 1)2

= 100a+ (b+ 1)(20a+ (b+ 1))

> 100a+ y

= x

Taking the root of both sides we have 10a + b + 1 >
√
x. Putting the two

facts together gives
10a+ b ≤

√
x < 10a+ b+ 1

and thus
10a+ b =

⌊√
x
⌋

Everything in this section works for any base greater than 2. For base 2,
replace 20 with 102 + 102, i.e., 1002.

2.2 Functional algorithm

The above two observations lead to the following functional algorithm

fun nroot(x : int)

pre x ≥ 0
post result = �√x�
if x = 0

return 0

else

let a = nroot(x div 100)
let y = x− 100a2
let b be the largest int such that b(20a+ b) ≤ y
assert 0 ≤ b < 10
return 10a+ b

2.3 Recursive imperative algorithms

As a first step toward an iterative algorithm we replace the recursive function
above with a recursive procedure that expects its input in a parameter x and
leaves its output in a variable a

5

var a
proc nrootImp(x : int)

pre x ≥ 0
post a′ = �√x�
if x = 0

a := 0

else

nrootImp(x div 100)
% Calculate the next digit of a

let y = x− 100a2
let b be the largest int such that b(20a+ b) ≤ y
assert 0 ≤ b < 10
a := 10a+ b

nrootImp(x)

The next step is to eliminate all local variables; in this case x is local to
the procedure. To do that we put x := x div 100 in front of the recursive
call. However, after the call we need to undo this assignment and so we have
to remember all the digits that have been taken off. To do this we use a
variables p and i. The variable p holds all the digits that have been removed
from x but that haven’t yet been put back, we use i to count how many pairs
of digits have been moved from x to p. For example, if the orginal value of
x is 1234567890, then after 3 digit pairs have been transfered, we will have

i = 3 p = 567890 x = 1234

The condition that links x, p, and i is x0 = x × 100i + p where x0 is the
original value of x.

var a
var p
var i
let x0 = x
proc nrootImp

pre x ≥ 0 ∧ x0 = x× 100i + p ∧ 0 ≤ p < 100i
post a′ = �√x� ∧ x0 = x′ × 100i′ + p′ ∧ 0 ≤ p′ < 100i′
if x = 0

a := 0

6

else

% Shift two digits from the right end of x to the left end of p

p := p+ (xmod 100)× 100i
x := x div 100
i := i+ 1

nrootImp
% Shift two digits from the left end of p to the right end of x

i := i− 1
x := 100x+ pdiv 100i

p := pmod 100i

% Calculate the next digit of a

let y = x− 100a2
let b be the largest int such that b(20a+ b) ≤ y
assert 0 ≤ b < 10
a := 10a+ b

i := 0
p := 0
nrootImp

2.4 Iterative algorithm

The recursion is linear and of the form

proc s

pre P
post Q
if E

C

else

B
s
D

A
s

Such a recursion can be transformed into a pair of loops

7

A
while ¬E
inv P
B

C
while ...

inv Q̃
D

where the second loop iterates the same number of times as the first. The
invariant Q̃ of the second loop is the same as Q but with all primes erased.
Applying this transformation to the most recent version gives:

pre x ≥ 0
post a′ = �√x�
let x0 = x
var p := 0
var i := 0
while x �= 0
inv 0 ≤ p < 100i
inv x0 = x× 100i + p
% Shift two digits from the right end of x to the left end of p

p := p+ (xmod 100)× 100i
x := x div 100
i := i+ 1

var a := 0
while i �= 0
inv a = �√x�
inv 0 ≤ p < 100i
inv x0 = x× 100i + p
% Shift two digits from the left of p to the right end of x

i := i− 1
x := 100x+ p div 100i

p := pmod 100i

% Calculate the next digit of a

let y = x− 100a2

8

let b be the largest int such that b(20a+ b) ≤ y
assert 0 ≤ b < 10
a := 10a+ b

The invariants of the second loop are a = �√x�, 0 ≤ p < 100i and
x0 = x×100i+p, where x0 is the original value of x.When the loop terminates
we have, i = 0 and so p = 0, and thus x = x0, and so a =

⌊√
x0
⌋
.

As an optimization, we can note that the first loop’s effect on p is to set
it to the initial value of x; we can remove the assignment to p in the loop
and instead initialize p to x. Of course, this destroys the loop invariant of
the first loop, but it still ensures that after the first loop we have

0 ≤ p < 100i ∧ x0 = x× 100i + p

2.5 A strength reduction

It is inefficient to recalculate a2 each time through the second loop. One
way to avoid recalculating a2 each time through the loop is to add a tracking
variable z with an invariant of z = x−a2. Using a tracking variable to track a
product is similar to the classic compiler optimization of strength reduction.
This gives a formal version of the pencil and paper algorithm Eric told

me about:

pre x ≥ 0
post a′ = �√x�
let x0 = x
var p := x
var i := 0
while x �= 0
x := x div 100
i := i+ 1

var a := 0
var z := 0
while i �= 0
inv a = �√x�
inv 0 ≤ p < 100i
inv x0 = x× 100i + p
inv z = x− a2

9

% Shift two digits r from the left of p to the right of x

i := i− 1
let r = pdiv 100i

x := 100x+ r
p := pmod 100i

% Calculate the next digit of a

let y = 100z + r
assert y = x− 100a2
let b be the largest int such that b(20a+ b) ≤ y
assert 0 ≤ b < 10
z := y − b(20a+ b)
a := 10a+ b

The new assignment to y is justified as follows. Let x1 be the value of x
at the start of the loop body. Thus we have (at the point of the declaration
of y) z = x1 − a2 and hence 100a2 = 100x1 − 100z. At the same point we
have x = 100x1 + r. Subtracting we get x − 100a2 = 100z + r; the RHS is
the value assigned to y and the LHS is what we require it to be.
The assignment to z in the loop is justified as follows. Let a0 be the

value of a prior to the assignment to a in the loop. Then, at the end of
the loop body, we have x = y + 100a2

0
and a2 = 100a2

0
+ b(20a0 + b).So

x − a2 = y − b(20a0 + b).Thus, after the assignment to z, z = x − a2, as
desired.
The assignment to x in the second loop is no longer needed to calculate

the result, but I’ve left it in because x is still used in the reasoning.

2.6 Hardware algorithm

We can apply the same algorithm to any base. An obvious choice for hard-
ware implementation is base 2, but base 4 or 8 might lead to quicker hard-
ware, at the price of a few more gates. The following version uses base 2.
In it, I’ve replaced p with a variable q which contains the same number

as p but written backwards in base 4; (if p = 12304 then q = 3214); in binary,
the order of pairs of bits is reversed so that the most significant bit is 1, then
0, then 3, then 2, etc. Operations that previously involved the left end of p,
now involve the right end of q. This representation avoids the use of powers,
which, in hardware terms, means that there is no need for variable shifts: all
shifts are now by one or two bits.

10

pre x ≥ 0
post a′ = �√x�
var q := 0
var i := 0
while x �= 0
% Shift two bits from x to q.

q := 4q + xmod 4;
x := x div 4
i := i+ 1

var a := 0
var z := 0
while i �= 0
% Shift two bits r from q.

i := i− 1
let r = qmod 4
q := q div 4

% Calculate the next bit of a

let y = 4z + r
let b be 1 if (4a+ 1) ≤ y and 0 otherwise
z := y − b(4a+ b)
a := 2a+ b

Note that all operations are easily implemented with digital hardware.
The most complex components needed are adders, subtractors, and a com-
parator.
This algorithm is similar to one that I derived a few years ago based on

an abstract binary search. However that algorithm did not take advantage
of the first observation and thus uses arithmetic with more bits than needed
here, especially in the early iterations. Calculating with fewer bits or digits
is an advantage when you are using pencil and paper; it is also an advantage
in pipelined hardware, as it leads to a saving of gates. Furthermore, as that
algorithm started with binary search, it lead directly to the binary version
of the algorithm and did not make the generalization to other bases quite as
obvious.

11

