
The UniÞed Modelling
Language

Theodore Norvell

1

The UniÞed Modelling Language Theodore Norvell

What is the UML
Premise
Software systems are complex. We need simpler views of
them in order to master that complexity.
UML is a language for visual modelling.

� Visual modelling is one way of creating accessible abstrac-
tions of complex systems.

� UML is a visual language � follows the tradition of Booch
notation and OMT.

� UML supports OO analysis and design.
Use of UML

� In analysis and speciÞcation phases to model
∗ real-world objects and classes, situations, and processes
(e.g., business processes).

∗ existing software components.
∗ interactions between planned software and the above.

� In design phase to model internal components and pro-
cesses.

� To document legacy systems.
2

The UniÞed Modelling Language Theodore Norvell

Diagrams of UML
� Class diagrams � classes and packages, their properties,
relationships.

� Object diagrams � snapshots of objects and their relation-
ships.

� Use-case diagrams � use cases, actors, relationships.
� Sequence diagrams and Collaboration diagrams � typical
sequences of events (e.g., calls).

� Statechart diagrams � Þnite state machines.
� Activity diagrams � algorithms / data-ßow.
� Component diagrams � implementation components (e.g.
source & object Þles)

� Deployment diagrams � deployment of components on
computers.

3

The UniÞed Modelling Language Theodore Norvell

A Class Diagram

Applet
(f rom applet)

Frame
(fro m awt)

Applet
(from applet)

TinyApplet MainFrame
10..1

BigApplet
10..11

has
1

has

Each TinyApplet
has 1 MainFrame.
A MainFrame may
belong to at most
one Tiny Applet

Each MainFrame
is a Frame

Classes

0..10..1

Diagrams shows

� 6 classes
� 3 inheritance relationships
� 2 has-a relationships.

4

The UniÞed Modelling Language Theodore Norvell

Supplying information about a class

AbstractPointer
theStore : Store

AbstractPointer(...)
putValue(pointee : AbstractDatum)
putValue(addr : int)
getValue() : int
getByte(i : int) : int
<<abstract>> getPointeeType()

<<Abstract>>

Each class is displayed as a box with 3 or more parts:

� <<stereotype>> Name. Stereotypes are used to identify
classes that are used in stereotypical ways, e.g. interfaces,
abstract classes, actors (agents outside system), exceptions,
etc. The Name is the name.

� Attributes. (A.k.a. Fields / data members). This class has
one.

� Operations. (A.k.a. Method signatures, function members).
� Other parts as you please. E.g., responsibilities
Operations and attributes are marked according to visibility.

5

The UniÞed Modelling Language Theodore Norvell

We can model dependance
How to do cyclic calling without cyclic dependance.

BigApplet

Command
Interface

DisplayManager
(f rom DisplayEngine)

BigApplet
realizes
(implements) the
Command
Interface

DisplayMaager
Depends on
Command
Interface

BigApplet
Depends on
Display
Manager<<creates>>

6

The UniÞed Modelling Language Theodore Norvell

Class relationships
� Is-a (specialization): Every D is an M. Class D specializes
class M. Class D inherits from class M.
In C++ we say D derives from M. In Java D extends M.

D M

Note that class D depends on M.
� Realizes. D implements interface M. Special case of above
for interfaces.

D M
<<Interface>>

or lollypop notation:

D

M

7

The UniÞed Modelling Language Theodore Norvell

� Knows-a (association): Every D can (potentially) easily Þnd
an M.
In C++ (or Java) D might have a data member (Þeld) that is
a pointer to an M.

D M0..n0..n

In the above diagram the D object knows 0 of more M
objects. In C++ you might have a data member that is a
vector of pointers to M objects.
Use a two way arrow if the M object can Þnd the D object
that can Þnd it.
Use no arrow if there is an association, but you don�t want
to imply that either can Þnd the other.
Usually (with the arrow) D depends on M.

� Has-a (aggregation): Every D has an M�s.
This is a special case of �knows-a�. Use it when the
lifetimes are coincident; i.e. creating a D object creates the
M object and destroying the D object destroys the M object.

8

The UniÞed Modelling Language Theodore Norvell

MD
1

-name

1

In C++, D might have a private data member of type M
called name, or D might have a pointer to an M object that
is set with new when a D is constructed and sent to delete
when a D is destructed..

� Depends on: Use when there is dependance, but none of the
above are appropriate.
E.g. Some method D.foo() takes an M as a parameter,
returns an M as a result, creates an M, but doesn�t maintain
a long term association, or calls a static method of M.

D M

It is good to use a stereotype to describe the type of
dependance. E.g.:

D M<<calls>>

9

The UniÞed Modelling Language Theodore Norvell

Sequence diagrams
Show typical scenarios � not algorithms.

client : BigApplet cppl :
CPlusPlusLang

 : DisplayManager : Evaluator

loadStr("C++",s) <<create>>

<<create>>(cppl)

<<create>>

Messages may be sent to self
 : BigAppletclient

loadStream

loadString

The stream is
read to create a
string

10

The UniÞed Modelling Language Theodore Norvell

Sequence diagrams
... can show the interaction of a system with objects outside
(speciÞcation)

 : user : TM : file-system

click on load menu item

click on file name or cancel

File menu
appears

get list of files

read the fi le

If file is
readable

11

The UniÞed Modelling Language Theodore Norvell

Collaboration Diagrams
Same info as sequence diagram, but in different form

client

 : BigApplet

cppl :
CPlusPlusLang

 : DisplayManager

 : Evaluator

1: loadStr("C++",s)

2: <<create>>
3: <<create>>(cppl)

4: <<create>>

12

The UniÞed Modelling Language Theodore Norvell

State Diagrams
Allows description of Þnite number of states

Empty nonEmptyNonFul Full
push

pop

Error

pop
push

push

pop

pushpop

13

The UniÞed Modelling Language Theodore Norvell

A VCR showing substates

Tape loaded

Stopped
Playback

RecordStandby

Stopped
Playback

Empty

RecordStandby

program

start time

cancel stop time, stop
stop

playeject

ejectload

14

The UniÞed Modelling Language Theodore Norvell

Conclusions and Assessment
UML has considerable momentum.

� Lots of books.
� Good industry uptake.
UML is big and expandable.

� It offers something to everyone.
� But it is weak on data ßow.
� Assertion language (OCL) is deÞned, but not widely known
and may deÞne semantics of classes better than state or
activity diagrams.

Tools
There are several tools that hold models

� Keep diagrams consistent with database.
� Automatic analysis of source code.
� Automatic generation of source code.
� Round-trip engineering.

15

