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Abstract - A website featuring interactive examples 
used to teach introductory programming to both 
on-campus and, recently, distance students is 
described. On-line notes are created using a pair of 
tools, Web-Writer++, an authoring system for 
programming instructors, and the Teaching 
Machine, a program animator which is used to 
interactively display the examples. The tools allow 
the instructor in the classroom or the student on 
their own to step through computer programs 
written in C++ or Java. The animations that unfold 
are designed to build a deep understanding of how 
computers process programs, consonant with the 
kind of mental models we believe professional 
programmers hold. In-class versus distance 
experience will be discussed. 
 
Index Terms – The Teaching Machine. Program 
animation. Program visualization. Interactive course 
notes. Web-based course notes. 

INTRODUCTION 

The Faculty of Engineering at Memorial University in 
St. John’s, Newfoundland is a leading Canadian co-
operative engineering education institution offering 
five different degree programs in a co-operative 
engineering context. All first year students take a 
common curriculum which includes Structured 
Programming, (basically CS1). Students choose their 
major at the beginning of second year. During that 
second year both Electrical and Computer Engineering 
students take Advanced Programming followed by 
Data Structures. 

Starting in 1999 we have introduced new teaching 
methods aimed at resolving what we consider to be a 
rising problem: modern students have more difficulty 
with traditional approaches to computer programming 
than did their counterparts of even a decade earlier. We 
believe a large part of the problem is that most of them 
come to university with very little appreciation of how 
a computer really works. Paradoxically, while today’s 
student has grown up with computers, most young 
people are really more net- than computer- literate. On 
the one hand the computer is dwindling from an object 
of inherent interest into a mere gateway appliance; on 

the other hand that appliance, layered as it is in a 
wedding cake of menus, wizards and windows, is 
vastly more complex than the machines of only a 
decade ago. Manipulating today’s machines has 
become so complicated that help is generally only 
available as a series of goal-based recipes. It’s no 
wonder that students have little in the way of a mental 
model of computing. 

THE MODELING PROBLEM 

We have talked about the modeling problem more 
formally in a previous paper [1] using an approach 
based on the work of Norman [2] and Yehezkel [3]. 
The essence is that given a system T, a mental model of 
T can be defined as M[T]. Norman’s work, however, 
was based on a very well defined T (a simple 
calculator). In teaching high-level (as opposed to 
machine language) programming it is much harder to 
define T. 

 As we struggled to impart to our students that 
each instruction they wrote was meaningful, we had an 
important insight. The machine (or system) T we were 
programming (and which we wanted the students to 
understand), was not really a computer, at least in the 
classic, hardware, sense. 

Consider the following simple C code: 
int x=5; 
int y = 12; 
int z; 
z = y/5 + 3.1; 

In the language of programming, we say, there are 
four instructions to be executed. Instructions to what 
and to be executed by what? T of course, but T T is 
certainly not the CPU. The first three “instructions” are 
actually to the compiler. We view them as request for 
allocation of memory, in the stack, if they are internal 
declarations, in the static store if external. The fourth is 
a minefield. There’s a truncation and two automatic 
type conversions. If you really want students to 
understand it they need to be able to interpret the 
expression and see the conversions, but these are 
normally done by the compiler. CPU operations 
include fetching the value for y (whether in a register 
or memory), carrying out the separate calculations, one 
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in the integer arithmetic unit and one in the floating-
point processor, and writing the final value back to z.  

We define T to be the system to which we are 
giving instructions. That is, 

T

T is at least partly defined 
by the language. In the case of C++ and Java 
languages, T is an abstraction combining aspects of the 
computer, the compiler and the memory management 
scheme. Our T is not nearly as “knowable” as 
Norman’s. That does not relieve us of the responsibility 
of at least trying to define it. We developed the 
Teaching Machine to provide students with a visual 
representation of the T that we believe approximates 
the one most professional programmers program to. 

INTEGRATED TEACHING PAGES 

I. WebWriter++ 

Originally we used the TM in the classroom as an 
adjunct to lecture notes written on the chalkboard or 
presented as overhead transparencies. As the TM is 
written in Java and can be run as an applet, it seemed 
natural to embed it directly into web pages and to use 
these web pages as the lecture notes. However, to do 

this efficiently and effectively, 
more than HTML was required. 
Thus was born a second tool. 

WebWriter++ (WW++) is an 
authoring system written in 
JavaScript that allows instructors 
to easily create web pages for 
programming courses. Its most 
important feature is that it allows 
C++ and Java source files to be 
retrieved from the server and 
displayed on a web page. The 
examples appear as they would in 
a program editor, with keywords, 
comments, and constants all 
marked 

Figure 1 shows a portion of a 
lecture on expressions taken from 
the Engineering 2420 lecture 
notes. The exact same notes are 
used 

• As lecture notes in a class 
of 200+ 

• As study notes via the 
web (or they may be downloaded) 

Figure 1. A page generated by WebWriter++. • As course notes for the distance version  
The only difference between versions is that 

different style sheets are used as larger fonts are 
required for lecture projection than for self-study on an 
individual computer screen. 

The print button on the title bar creates another 
version that is optimized for printing. 

In Figure 1 (which shows the smaller fonts) the 
instructor has created a simple example using a 
standard Integrated Development Environment (IDE) 
and embedded it directly into the lecture notes. The 
notes themselves were prepared on a conventional 
HTML editor but the insertion of the example is 
handled by WW++. The appearance of the code within 
the code container is governed by a style sheet 
allowing instructors to match its look to that of the 
code in the IDE students use for their assignments. 

WW++ provides the code container with up to 
three buttons. Of most importance is the run button 
which activates the TM in a new window, as shown in 
Figure 2. 

II. The Teaching Machine 

The TM uses the metaphor of a debugger; in 
Figure 2 it has already been stepped through a number 
of instructions. Each of the declarations has been 
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treated as a line of active code. The execution of a 
declaration results in space being set aside in memory 
for the variable declared. If it is initialized the initial 
value appears in memory. 

The next line to be executed has been highlighted 
in the code window. As it is in the form of an 
assignment expression, the expression has been loaded 
into what we call the Expression Engine (EE) shown in 
the top middle of Figure 2. The arrow buttons in the EE 
allow us to step through the evaluation of the 
expression. In Figure 2 the expression has been partly 
stepped through. The value of i has already been 
evaluated to 11 and the value of j is in the process of 
being looked up. Its address has been found in the 
symbol table as 8196 and address 8196 is highlighted 
in memory to show that the next step is to fetch the 
value of 7. 

The fetch operation models the physical computer 
directly, while the symbol table is an artifact of the 
C++ compiler. The TM is a hybrid in that it models 
both the actions of the CPU —carrying out 
calculations— and the compiler —parsing the 
expression and looking in the symbol table. In order to 
properly understand how to write even very simple 
C++ or Java programs, students have to have a grasp of 
all these mechanisms as an integrated whole; that is 
they need an integrated mental model; we believe it is 
best to present these parts as if they were a single 
integrated machine. 

Similar program animation 
systems include Jelliot [4] and 
VIP [5]. 

III. Usage 

In presenting the material in 
lecture, we generally step 
through the examples as we go. 
Originally, we went through a 
similar process by hand, 
drawing and redrawing memory 
contents by hand as the program 
evolved. The TM has freed us 
from this labour, giving us far 
more time to interact with 
students and answer questions. 
Moreover, by integrating the 
demos directly into the notes, 
students are able to re-run the 
same examples for themselves. 

To aid in this process, WW++ provides a facility for 
allowing instructors to write separate demo notes that 
are taken out of the lecture flow but can be revealed 
later by the student to assist them in how to run the 
demo. 

Figure 2. The Teaching Machine 

Distance students don’t get to see the demos run in 
class, so videos have been created of some of the most 
crucial ones. These simply show the TM being run by 
an instructor with an audio commentary as well as 
labelled annotations. Where such videos are available, 
the instructor can include a video button in the example 
container (see Figure 1). 

The edit button allows an example to be edited and 
rerun in the TM to answer ‘what if’ questions. 

IV. Other WebWriter++ Features 

It is often undesirable to show an entire program when 
discussing a particular point. Using a simple markup 
system embedded in comments in the code, the 
instructor can select only a portion of the source file for 
display and can select different portions for different 
points. The student can see the entire program by 
activating the TM. Of course, this can’t be done when 
studying from printed notes so, when the notes are 
printed, full versions of the code are shown at the end 
of each chapter. 

The authoring system includes a number of other 
features. For example one can roll the mouse pointer 
over a variable and see its scope illuminate in the code.  

WebWriter’s primary thrust is to let courseware 
authors focus on content rather than technology. 
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MORE ADVANCED MODELS 

In Advanced Programming, our second course, 
students need a more sophisticated model for computer 
memory. The “Local Memory” window of Figure 2 
actually represents the stack and is shown as such in 
more advanced courses. In addition, the heap and static 
store are shown as separate windows. Again while 
most computers have stack management built directly 
into the hardware, heap management is implemented in 
software in a language dependent way. Thus the TM 
includes aspects of memory management as well as of 
the compiler and the hardware. 

 

As of this writing all course notes in the 
fundamental three course programming stream have 
been rewritten using WW++ with extensive use of 
embedded, interactive TM examples. All three courses 
use C++ as a teaching language. However, we have far 
more experience with Advanced Programming (AP) 
and Data Structures (DS) than with Structured 
Programming (SP, our version of CS1). 

Figure 3. The linked view. 

I. Linked View 

In the standard views of memory, pointers are shown 
as addresses (in decimal) and values of C++ references 
are presented as the name of the variable being referred 
to. An alternative view of memory is shown in Figure 
3. The linked view shows stack data on the left and 
heap data to the right. Pointers and references are 
shown as arrows pointing to the box representing the 
data item they point to. Typically the linked view is 
used in more advanced courses, such as Data 
Structures. 

II. Program animation and debugging 

The resemblance of the TM bears to a debugger is 
quite deliberate. However the intended audience and 
purpose are different. A debugger is intended for a 
professional software engineer, who already has a good 
understanding of programming. The TM is intended to 
help learners to build effective mental models of 

programming. The linked view gives an example of 
this. In a debugging context, the linked view would be 
hopelessly space consuming and would require support 
for navigation through structures too big to fit on the 
screen. In the TM, the linked view is only intended for 
small examples and works quite well on them. 

I. Language Coverage 

The current version of the TM, known as Teaching 
Machine 2, supports most of the features of C++ used 
in our first three programming courses (eventually to 
be extended to all remaining such features with the 
exception of templates). In addition we have a 
reasonably complete Java implementation (enough that 
we use it in a grad course) with plans to implement the 
entire language, except for concurrency and generics.  

IN-CLASS EXPERIENCE 

I. Context 

II. Advanced Courses 

The TM was first used in AP in 1999 as a standalone. It 
was something of an interruption to the usual flow of 
lecturing from overhead transparencies or the 
chalkboard and so fully integrated notes built with 
WW++ were started in 2003.  

In 2003, the notes were written while the course 
was being taught. Students were guardedly positive 
during that process but embraced the concept in 2004 
when the instructor was able to concentrate on teaching 
instead of writing (and when printed notes were 
available at the outset).  

Introduction of the TM and integration into notes 
in DS followed a similar arc, with a one to two year 
delay. We have ample evidence of the success of the 
approach in these two courses, including student 
surveys and exit interviews with the department head 
[1]. Perhaps the most telling indicator of its success, 
however, is that in the late nineties AP was widely 
regarded by students as the most difficult course in the 
entire Electrical Engineering curriculum, so much so 
that we devoted four lectures a week to it instead of 
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three. It no longer has that reputation, despite reducing 
the number of lecture hours to three with no drop in 
content. Indeed, grades have become so high that it is 
clear we need to add new material to the course. 

II. First Year Programming 

Let us say at the outset that we have not yet been so 
successful with the first year course in Structured 
Programming (SP). In good part this has been because 
of confounding factors such as major changes to the 
course itself. But it has also been due to mistakes on 
our part, and therein lies a cautionary tale. We’re 
learning and we believe we’ll get it right but the 
mistakes are illuminating. 

In 2005 the Faculty of Engineering committed to a 
full-scale introduction of the technology to SP. 
Following the pattern of the more advanced courses, 
new web-based notes were written as the course was 
taught and were moderately well received by the 
students. At that point we were at the guardedly 
positive stage and had every expectation that the same 
arc would be followed as occurred in AP and DS. 
However, in the background, major changes were in 
the offing. 

Although Engineering has four academic years, 
our students have always entered only after an 
additional general year of university. Starting in 2009 
students will enter Engineering directly from high 
school, as they do throughout the rest of Canada. 

The brunt of this change is occurring in the first 
year. Ten engineering courses had to be cut back to 
four to make room for first year math, science and 
English. The first year programming course was kept 
on the grounds that it is important to expose first year 
engineers to as many different styles of thinking as 
possible. 

Nevertheless, we had to agree to revise the course 
extensively. The changes were not required until the 
fall of 2008. However, that year is going to create a 
major transient in the curriculum. Of the four first year 
engineering courses in the new curriculum, two are 
composites of existing courses and so can only be 
introduced in 2008, while the other remains 
substantially unchanged. SP is the only course that 
could be changed in place, as it were. In the interests of 
reducing the 2008 transient we decided to implement 
the changes immediately. 

Traditional (that is, non-objects-first) beginning 
courses spend a lot of time writing simple programs 
with just a main function. Functions are not introduced 
until about half way through and arrays generally don’t 
get covered until the end of the semester. As SP is a 

terminal course for most of the class, the objects first 
approach was not an acceptable option. Instead, we 
decided to teach programming from the inside out, 
starting with functions and moving to full programs 
only at the end of the course. 

In the winter of 2006, the notes were rewritten 
again. The course was being taught to the larger class 
size of 200+ for the first time. Not to put too fine a 
point on it the course was a disaster. Students were 
baffled. 

The instructor (Bruce-Lockhart) had taught the 
course in 2005 with moderate success, and had been 
using the technology to teach AP for years. So it wasn’t 
the instructor. Moreover, the same instructor had taught 
introductory circuits to the same class in the same 
(new) lecture theatre, developing new electronic notes 
as he went with great success. So it wasn’t the new 
class size, the particular group of students or the 
qualities of the new room. 

III. Suppression of main 

Our traditional approach had always provided a very 
distorted view of programming. Students spend most of 
their time writing main functions whereas professional 
programmers very seldom write a main function. The 
TM represents nine years development, has over 500 
classes and 5,000 functions, yet has only one main 
function (written nine years ago). At best it can be 
regarded as a moderate sized program. By getting 
students to write functions embedded in a larger 
system, we reasoned that we would be modeling 
modern programming more closely, while also opening 
the door to being able to do more interesting tasks 
(such as image processing). 

In keeping with that philosophy, we suppressed 
main completely, which turned out to be a very bad 
idea. In retrospect, it’s obvious: programs became 
mysterious and students had no idea where the data fed 
to their functions came from. Already unhappy about 
learning programming, bafflement quickly turned to 
resistance. 

IV. Failure to Engage 

The bafflement was compounded by a failure of the 
students to engage with the TM. One of the benefits of 
our approach is that students can rerun examples for 
themselves when they are studying.  The benefits of 
such active engagement are well understood by the 
programming visualization community which has 
found that simply viewing a visualization provides 
inadequate learning [6]. We knew from surveys that 
our advanced students were using the TM actively on 
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their own. We found at the end of the course that most 
of the first year students had never run it on their own 
and consequently didn’t really understand how either 
the TM, or the model it was based on, worked.  

At the end of the winter 2006 semester, three 
tutorials in the computer lab were offered to (and taken 
by most) students. New examples were created for each 
of the three most difficult topics and students were 
taken through them on the TM, just as in lecture, only 
this time they were asked to follow on and run the 
examples themselves on the lab machines. Student 
response was overwhelmingly positive and the course 
was at least rescued. 

DISTANCE VERSION 

In the summer and fall of 2006, SP was offered by 
distance as a pilot project.  In view of the experience 
reported above, the examples (and to some extent the 
notes) were rewritten to re-introduce main, albeit in a 
reduced role (students see main and have its workings 
explained but are not expected to write main code). In 
addition, to compensate for the fact that students could 
not see the instructor in class, videos of the most 
crucial examples were made. Very few students took 
the course, five in the summer and seven in the fall, so 
conclusions are necessarily sketchy. 

One interesting point is that all students in the 
summer group had failed the winter on-campus course 
and were retaking SP by distance in preference to 
simply writing a re-exam in the fall. Normally, the pass 
rate on re-exam is about 50-60%; however all these 
students passed and a couple of them did quite well. 

In contrast, the fall group were all neophytes. 
Performance was more mixed, although in the end 
everyone passed. One notable difference from the 
summer group was that there was a lot more difficulty 
getting student programs to compile. The summer 
students had the benefit of labs when they did the 
course on-campus and so at least knew how to set up a 
project on the compiler.  

At this stage we have concluded in teaching first 
year programming by distance, that our approach was 
useful to at least some of the students, and that if we 
are to continue the experiment we must find a way to 
create an on-line equivalent of a lab, whereby an 
instructor can at least be able to view a student’s screen 
and see why a program isn’t compiling.  

SUMMARY: MAKING THE IMPLICIT EXPLICIT 

Students, especially early students, often complain that 
programming is ‘too abstract’. To the teacher, used to 

dealing with the abstract algorithms and abstract 
mathematical models of computation, such comments 
seem puzzling —what could be more concrete than a 
computer program which spells out all the details for 
the compiler. But the student has a good point, from 
their perspective. First, that program only spells it out 
if you know all the ins and outs of the language. An 
identifier might identify any of a number of identically 
named identifiers. An expression might contain 
implicit conversions. A parameter might be copy 
constructed. Two pointers might be aliases. The TM 
strives to make the implicit explicit, visible, and 
tangible. Second, the model of computation is implicit. 
The instructor may talk about variables changing value, 
but this is not meaningful for most students if they 
can’t see the values of variables and can’t see them 
change. The implicit model of computation is made 
explicit by the TM. 

We found that the TM was useful on its own, but 
imposed breaks in our lecture flow; moreover using the 
TM was a significant break from the student studying 
the notes out of class. WW++ allowed us to create 
interactive electronic course notes with little effort. 
Experience with the TM and WW++ together has 
suggested to us that the combination improves the 
experience of the course for students in lectures, 
studying on their own, and in distance education. 
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