
Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

T1A-1

Developing Mental Models of Computer
Programming Interactively Via the Web

Michael P. Bruce-Lockhart and Theodore S. Norvell

Computer Engineering Research Labs, Faculty of Engineering and Applied Science,
Memorial University of Newfoundland, St. John’s, NL, A1B 3X5.

mpbl@engr.mun.ca theo@engr.mun.ca.

Abstract - A website featuring interactive examples
used to teach introductory programming to both
on-campus and, recently, distance students is
described. On-line notes are created using a pair of
tools, Web-Writer++, an authoring system for
programming instructors, and the Teaching
Machine, a program animator which is used to
interactively display the examples. The tools allow
the instructor in the classroom or the student on
their own to step through computer programs
written in C++ or Java. The animations that unfold
are designed to build a deep understanding of how
computers process programs, consonant with the
kind of mental models we believe professional
programmers hold. In-class versus distance
experience will be discussed.

Index Terms – The Teaching Machine. Program
animation. Program visualization. Interactive course
notes. Web-based course notes.

INTRODUCTION

The Faculty of Engineering at Memorial University in
St. John’s, Newfoundland is a leading Canadian co-
operative engineering education institution offering
five different degree programs in a co-operative
engineering context. All first year students take a
common curriculum which includes Structured
Programming, (basically CS1). Students choose their
major at the beginning of second year. During that
second year both Electrical and Computer Engineering
students take Advanced Programming followed by
Data Structures.

Starting in 1999 we have introduced new teaching
methods aimed at resolving what we consider to be a
rising problem: modern students have more difficulty
with traditional approaches to computer programming
than did their counterparts of even a decade earlier. We
believe a large part of the problem is that most of them
come to university with very little appreciation of how
a computer really works. Paradoxically, while today’s
student has grown up with computers, most young
people are really more net- than computer- literate. On
the one hand the computer is dwindling from an object
of inherent interest into a mere gateway appliance; on

the other hand that appliance, layered as it is in a
wedding cake of menus, wizards and windows, is
vastly more complex than the machines of only a
decade ago. Manipulating today’s machines has
become so complicated that help is generally only
available as a series of goal-based recipes. It’s no
wonder that students have little in the way of a mental
model of computing.

THE MODELING PROBLEM

We have talked about the modeling problem more
formally in a previous paper [1] using an approach
based on the work of Norman [2] and Yehezkel [3].
The essence is that given a system T, a mental model of
T can be defined as M[T]. Norman’s work, however,
was based on a very well defined T (a simple
calculator). In teaching high-level (as opposed to
machine language) programming it is much harder to
define T.

 As we struggled to impart to our students that
each instruction they wrote was meaningful, we had an
important insight. The machine (or system) T we were
programming (and which we wanted the students to
understand), was not really a computer, at least in the
classic, hardware, sense.

Consider the following simple C code:
int x=5;
int y = 12;
int z;
z = y/5 + 3.1;

In the language of programming, we say, there are
four instructions to be executed. Instructions to what
and to be executed by what? T of course, but T T is
certainly not the CPU. The first three “instructions” are
actually to the compiler. We view them as request for
allocation of memory, in the stack, if they are internal
declarations, in the static store if external. The fourth is
a minefield. There’s a truncation and two automatic
type conversions. If you really want students to
understand it they need to be able to interpret the
expression and see the conversions, but these are
normally done by the compiler. CPU operations
include fetching the value for y (whether in a register
or memory), carrying out the separate calculations, one

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

T1A-2

in the integer arithmetic unit and one in the floating-
point processor, and writing the final value back to z.

We define T to be the system to which we are
giving instructions. That is,

T

T is at least partly defined
by the language. In the case of C++ and Java
languages, T is an abstraction combining aspects of the
computer, the compiler and the memory management
scheme. Our T is not nearly as “knowable” as
Norman’s. That does not relieve us of the responsibility
of at least trying to define it. We developed the
Teaching Machine to provide students with a visual
representation of the T that we believe approximates
the one most professional programmers program to.

INTEGRATED TEACHING PAGES

I. WebWriter++

Originally we used the TM in the classroom as an
adjunct to lecture notes written on the chalkboard or
presented as overhead transparencies. As the TM is
written in Java and can be run as an applet, it seemed
natural to embed it directly into web pages and to use
these web pages as the lecture notes. However, to do

this efficiently and effectively,
more than HTML was required.
Thus was born a second tool.

WebWriter++ (WW++) is an
authoring system written in
JavaScript that allows instructors
to easily create web pages for
programming courses. Its most
important feature is that it allows
C++ and Java source files to be
retrieved from the server and
displayed on a web page. The
examples appear as they would in
a program editor, with keywords,
comments, and constants all
marked

Figure 1 shows a portion of a
lecture on expressions taken from
the Engineering 2420 lecture
notes. The exact same notes are
used

• As lecture notes in a class
of 200+

• As study notes via the
web (or they may be downloaded)

Figure 1. A page generated by WebWriter++. • As course notes for the distance version
The only difference between versions is that

different style sheets are used as larger fonts are
required for lecture projection than for self-study on an
individual computer screen.

The print button on the title bar creates another
version that is optimized for printing.

In Figure 1 (which shows the smaller fonts) the
instructor has created a simple example using a
standard Integrated Development Environment (IDE)
and embedded it directly into the lecture notes. The
notes themselves were prepared on a conventional
HTML editor but the insertion of the example is
handled by WW++. The appearance of the code within
the code container is governed by a style sheet
allowing instructors to match its look to that of the
code in the IDE students use for their assignments.

WW++ provides the code container with up to
three buttons. Of most importance is the run button
which activates the TM in a new window, as shown in
Figure 2.

II. The Teaching Machine

The TM uses the metaphor of a debugger; in
Figure 2 it has already been stepped through a number
of instructions. Each of the declarations has been

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

T1A-3

treated as a line of active code. The execution of a
declaration results in space being set aside in memory
for the variable declared. If it is initialized the initial
value appears in memory.

The next line to be executed has been highlighted
in the code window. As it is in the form of an
assignment expression, the expression has been loaded
into what we call the Expression Engine (EE) shown in
the top middle of Figure 2. The arrow buttons in the EE
allow us to step through the evaluation of the
expression. In Figure 2 the expression has been partly
stepped through. The value of i has already been
evaluated to 11 and the value of j is in the process of
being looked up. Its address has been found in the
symbol table as 8196 and address 8196 is highlighted
in memory to show that the next step is to fetch the
value of 7.

The fetch operation models the physical computer
directly, while the symbol table is an artifact of the
C++ compiler. The TM is a hybrid in that it models
both the actions of the CPU —carrying out
calculations— and the compiler —parsing the
expression and looking in the symbol table. In order to
properly understand how to write even very simple
C++ or Java programs, students have to have a grasp of
all these mechanisms as an integrated whole; that is
they need an integrated mental model; we believe it is
best to present these parts as if they were a single
integrated machine.

Similar program animation
systems include Jelliot [4] and
VIP [5].

III. Usage

In presenting the material in
lecture, we generally step
through the examples as we go.
Originally, we went through a
similar process by hand,
drawing and redrawing memory
contents by hand as the program
evolved. The TM has freed us
from this labour, giving us far
more time to interact with
students and answer questions.
Moreover, by integrating the
demos directly into the notes,
students are able to re-run the
same examples for themselves.

To aid in this process, WW++ provides a facility for
allowing instructors to write separate demo notes that
are taken out of the lecture flow but can be revealed
later by the student to assist them in how to run the
demo.

Figure 2. The Teaching Machine

Distance students don’t get to see the demos run in
class, so videos have been created of some of the most
crucial ones. These simply show the TM being run by
an instructor with an audio commentary as well as
labelled annotations. Where such videos are available,
the instructor can include a video button in the example
container (see Figure 1).

The edit button allows an example to be edited and
rerun in the TM to answer ‘what if’ questions.

IV. Other WebWriter++ Features

It is often undesirable to show an entire program when
discussing a particular point. Using a simple markup
system embedded in comments in the code, the
instructor can select only a portion of the source file for
display and can select different portions for different
points. The student can see the entire program by
activating the TM. Of course, this can’t be done when
studying from printed notes so, when the notes are
printed, full versions of the code are shown at the end
of each chapter.

The authoring system includes a number of other
features. For example one can roll the mouse pointer
over a variable and see its scope illuminate in the code.

WebWriter’s primary thrust is to let courseware
authors focus on content rather than technology.

Session T1A

MORE ADVANCED MODELS

In Advanced Programming, our second course,
students need a more sophisticated model for computer
memory. The “Local Memory” window of Figure 2
actually represents the stack and is shown as such in
more advanced courses. In addition, the heap and static
store are shown as separate windows. Again while
most computers have stack management built directly
into the hardware, heap management is implemented in
software in a language dependent way. Thus the TM
includes aspects of memory management as well as of
the compiler and the hardware.

As of this writing all course notes in the
fundamental three course programming stream have
been rewritten using WW++ with extensive use of
embedded, interactive TM examples. All three courses
use C++ as a teaching language. However, we have far
more experience with Advanced Programming (AP)
and Data Structures (DS) than with Structured
Programming (SP, our version of CS1).

Figure 3. The linked view.

I. Linked View

In the standard views of memory, pointers are shown
as addresses (in decimal) and values of C++ references
are presented as the name of the variable being referred
to. An alternative view of memory is shown in Figure
3. The linked view shows stack data on the left and
heap data to the right. Pointers and references are
shown as arrows pointing to the box representing the
data item they point to. Typically the linked view is
used in more advanced courses, such as Data
Structures.

II. Program animation and debugging

The resemblance of the TM bears to a debugger is
quite deliberate. However the intended audience and
purpose are different. A debugger is intended for a
professional software engineer, who already has a good
understanding of programming. The TM is intended to
help learners to build effective mental models of

programming. The linked view gives an example of
this. In a debugging context, the linked view would be
hopelessly space consuming and would require support
for navigation through structures too big to fit on the
screen. In the TM, the linked view is only intended for
small examples and works quite well on them.

I. Language Coverage

The current version of the TM, known as Teaching
Machine 2, supports most of the features of C++ used
in our first three programming courses (eventually to
be extended to all remaining such features with the
exception of templates). In addition we have a
reasonably complete Java implementation (enough that
we use it in a grad course) with plans to implement the
entire language, except for concurrency and generics.

IN-CLASS EXPERIENCE

I. Context

II. Advanced Courses

The TM was first used in AP in 1999 as a standalone. It
was something of an interruption to the usual flow of
lecturing from overhead transparencies or the
chalkboard and so fully integrated notes built with
WW++ were started in 2003.

In 2003, the notes were written while the course
was being taught. Students were guardedly positive
during that process but embraced the concept in 2004
when the instructor was able to concentrate on teaching
instead of writing (and when printed notes were
available at the outset).

Introduction of the TM and integration into notes
in DS followed a similar arc, with a one to two year
delay. We have ample evidence of the success of the
approach in these two courses, including student
surveys and exit interviews with the department head
[1]. Perhaps the most telling indicator of its success,
however, is that in the late nineties AP was widely
regarded by students as the most difficult course in the
entire Electrical Engineering curriculum, so much so
that we devoted four lectures a week to it instead of

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

T1A-4

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

T1A-5

three. It no longer has that reputation, despite reducing
the number of lecture hours to three with no drop in
content. Indeed, grades have become so high that it is
clear we need to add new material to the course.

II. First Year Programming

Let us say at the outset that we have not yet been so
successful with the first year course in Structured
Programming (SP). In good part this has been because
of confounding factors such as major changes to the
course itself. But it has also been due to mistakes on
our part, and therein lies a cautionary tale. We’re
learning and we believe we’ll get it right but the
mistakes are illuminating.

In 2005 the Faculty of Engineering committed to a
full-scale introduction of the technology to SP.
Following the pattern of the more advanced courses,
new web-based notes were written as the course was
taught and were moderately well received by the
students. At that point we were at the guardedly
positive stage and had every expectation that the same
arc would be followed as occurred in AP and DS.
However, in the background, major changes were in
the offing.

Although Engineering has four academic years,
our students have always entered only after an
additional general year of university. Starting in 2009
students will enter Engineering directly from high
school, as they do throughout the rest of Canada.

The brunt of this change is occurring in the first
year. Ten engineering courses had to be cut back to
four to make room for first year math, science and
English. The first year programming course was kept
on the grounds that it is important to expose first year
engineers to as many different styles of thinking as
possible.

Nevertheless, we had to agree to revise the course
extensively. The changes were not required until the
fall of 2008. However, that year is going to create a
major transient in the curriculum. Of the four first year
engineering courses in the new curriculum, two are
composites of existing courses and so can only be
introduced in 2008, while the other remains
substantially unchanged. SP is the only course that
could be changed in place, as it were. In the interests of
reducing the 2008 transient we decided to implement
the changes immediately.

Traditional (that is, non-objects-first) beginning
courses spend a lot of time writing simple programs
with just a main function. Functions are not introduced
until about half way through and arrays generally don’t
get covered until the end of the semester. As SP is a

terminal course for most of the class, the objects first
approach was not an acceptable option. Instead, we
decided to teach programming from the inside out,
starting with functions and moving to full programs
only at the end of the course.

In the winter of 2006, the notes were rewritten
again. The course was being taught to the larger class
size of 200+ for the first time. Not to put too fine a
point on it the course was a disaster. Students were
baffled.

The instructor (Bruce-Lockhart) had taught the
course in 2005 with moderate success, and had been
using the technology to teach AP for years. So it wasn’t
the instructor. Moreover, the same instructor had taught
introductory circuits to the same class in the same
(new) lecture theatre, developing new electronic notes
as he went with great success. So it wasn’t the new
class size, the particular group of students or the
qualities of the new room.

III. Suppression of main

Our traditional approach had always provided a very
distorted view of programming. Students spend most of
their time writing main functions whereas professional
programmers very seldom write a main function. The
TM represents nine years development, has over 500
classes and 5,000 functions, yet has only one main
function (written nine years ago). At best it can be
regarded as a moderate sized program. By getting
students to write functions embedded in a larger
system, we reasoned that we would be modeling
modern programming more closely, while also opening
the door to being able to do more interesting tasks
(such as image processing).

In keeping with that philosophy, we suppressed
main completely, which turned out to be a very bad
idea. In retrospect, it’s obvious: programs became
mysterious and students had no idea where the data fed
to their functions came from. Already unhappy about
learning programming, bafflement quickly turned to
resistance.

IV. Failure to Engage

The bafflement was compounded by a failure of the
students to engage with the TM. One of the benefits of
our approach is that students can rerun examples for
themselves when they are studying. The benefits of
such active engagement are well understood by the
programming visualization community which has
found that simply viewing a visualization provides
inadequate learning [6]. We knew from surveys that
our advanced students were using the TM actively on

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

T1A-6

their own. We found at the end of the course that most
of the first year students had never run it on their own
and consequently didn’t really understand how either
the TM, or the model it was based on, worked.

At the end of the winter 2006 semester, three
tutorials in the computer lab were offered to (and taken
by most) students. New examples were created for each
of the three most difficult topics and students were
taken through them on the TM, just as in lecture, only
this time they were asked to follow on and run the
examples themselves on the lab machines. Student
response was overwhelmingly positive and the course
was at least rescued.

DISTANCE VERSION

In the summer and fall of 2006, SP was offered by
distance as a pilot project. In view of the experience
reported above, the examples (and to some extent the
notes) were rewritten to re-introduce main, albeit in a
reduced role (students see main and have its workings
explained but are not expected to write main code). In
addition, to compensate for the fact that students could
not see the instructor in class, videos of the most
crucial examples were made. Very few students took
the course, five in the summer and seven in the fall, so
conclusions are necessarily sketchy.

One interesting point is that all students in the
summer group had failed the winter on-campus course
and were retaking SP by distance in preference to
simply writing a re-exam in the fall. Normally, the pass
rate on re-exam is about 50-60%; however all these
students passed and a couple of them did quite well.

In contrast, the fall group were all neophytes.
Performance was more mixed, although in the end
everyone passed. One notable difference from the
summer group was that there was a lot more difficulty
getting student programs to compile. The summer
students had the benefit of labs when they did the
course on-campus and so at least knew how to set up a
project on the compiler.

At this stage we have concluded in teaching first
year programming by distance, that our approach was
useful to at least some of the students, and that if we
are to continue the experiment we must find a way to
create an on-line equivalent of a lab, whereby an
instructor can at least be able to view a student’s screen
and see why a program isn’t compiling.

SUMMARY: MAKING THE IMPLICIT EXPLICIT

Students, especially early students, often complain that
programming is ‘too abstract’. To the teacher, used to

dealing with the abstract algorithms and abstract
mathematical models of computation, such comments
seem puzzling —what could be more concrete than a
computer program which spells out all the details for
the compiler. But the student has a good point, from
their perspective. First, that program only spells it out
if you know all the ins and outs of the language. An
identifier might identify any of a number of identically
named identifiers. An expression might contain
implicit conversions. A parameter might be copy
constructed. Two pointers might be aliases. The TM
strives to make the implicit explicit, visible, and
tangible. Second, the model of computation is implicit.
The instructor may talk about variables changing value,
but this is not meaningful for most students if they
can’t see the values of variables and can’t see them
change. The implicit model of computation is made
explicit by the TM.

We found that the TM was useful on its own, but
imposed breaks in our lecture flow; moreover using the
TM was a significant break from the student studying
the notes out of class. WW++ allowed us to create
interactive electronic course notes with little effort.
Experience with the TM and WW++ together has
suggested to us that the combination improves the
experience of the course for students in lectures,
studying on their own, and in distance education.

REFERENCES

[1] M. Bruce-Lockhart, T.S. Norvell & Y. Cotronis. Program and
algorithm visualization in engineering and physics,
Proceedings of the Fourth Program Visualization Workshop
(PVW 2006) (Florence, Italy, 2006).

[2] D. A. Norman. Some Observations on Mental Models, in
Mental Models, D. Gentner and A. L. Stevens eds., Lawrence
Erlbaum Associates, 1983.

[3] C. Yehezkel, M. Ben-Ari, and T. Dreyfus, Inside the Computer:
Visualization and Mental Models, Proceedings of the Third
Program Visualization Workshop, (PVW 2004) (Warwick,
U.K., 2004).

[4] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, Visualizing
Programs with Jeliot 3, Proceedings of the International
Working Conference on Advanced Visual Interfaces 2004,
(AVI 2004), (Gallipoli, Italy, 2004).

[5] A. Virtanen, E. Lahtinen, and H.-M. Järvinen, VIP, a Visual
Interpreter for Learning Introductory Programming with C++,
Proceedings of the Fifth Finnish/Baltic Sea Conference on
Computer Science Education, 2005.

[6] T. Naps, G Rößling, V. Almstrum, W. Dann, R. Fleischer, C.
Hundausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, J.
A. Veláquez-Iturbide. Exploring the role of visualization and
engagement in computer science education, ITiCSE-WGR '02:
Working group reports from ITiCSE on Innovation and
technology in computer science education, pp. 132–152, ACM
Press, 2002. Also published in ACM SIGCSE Bulletin, vol. 35,
#2, June 2003

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

T1A-7

