
Question Push versus pull. Take Back Control Conclusion

Take Back Control
Presented at NECEC 2015, St. John’s, NL

Theodore S. Norvell

Computer Engineering Research Labs, Dept. ECE, MUN

2015 November 5

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

The research question.

Can we write pull code in a pushy world?

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Asynchrony

Events happen when they want to, not when our program wants
them to.

I Users provide input.

I Other computers send data (or fail).

I Parallel computations complete or indicate progress or fail

The world pushes data at our programs.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

The usual solution

The usual solution

I Inversion of control.

I Program responds to events.

I The story line of the program is not reflected in the code.

What do I mean by that?

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

How I learned to program

The code pulls the data it needs from the user, from files, from
the net.

proc main()

loop
print “What is your name”

var name := read
print “hello ” name

Can you see the story told by the code?
The structure of interaction is reflected in the structure of the
code.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

How we write code in an asynchronous world
The world pushes data at our program.

var nameBox := new TextBox()
var question := new Label(“What is your name”)
var reply := new Label()
proc main()

attach handler nameBox nameBoxHandler
show question
show nameBox

proc nameBoxHander(event)

var name := nameBox.contents()
reply.text := “hello ” name
show reply

Where did the structure go?
Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Inversion of control

This style of programming is named Inversion of Control
The UI framework calls our code instead of our code calling the
library.
Having a fancy name doesn’t mean it’s a good idea.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Inversion of control

This style of programming is named Inversion of Control
The UI framework calls our code instead of our code calling the
library.
Having a fancy name doesn’t mean it’s a good idea.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Use cases

Use cases are stories. They are often used in requirements
gathering.
A use case is like a script that describes a (part of) the interactions
various parties.

Juliet Go ask his name: if he be married.
My grave is like to be my wedding bed.

Nurse His name is Romeo, and a Montague;
The only son of your great enemy.

Juliet My only love sprung from my only hate!
Too early seen unknown, and known too late!
Prodigious birth of love it is to me,
That I must love a loathed enemy.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Use cases

Use case: Greet user by name forever.

0. System: Prompts for name.

1. User: Types in a name and presses “enter”.

2. System: Greets the user by name

3. Back to 0.

Functional requirements can be captured by a set of use cases.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Use cases

Note how the “pull code” follows the structure of the use case.
0. System:

Prompts for
name.

1. User: Types in
name and enter.

2. System: Greets
the user by name

3. Back to 0.

loop

print “What is your name”
var name := read
print “hello ” name

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Lack of structure with inversion of control

var nameBox := new TextBox()
var question := new Label(“What is your name”)
var reply := new Label()
proc main()

attach handler nameBox nameBoxHandler
show question
show nameBox

proc nameBoxHander(event)

var name := nameBox.contents()
reply.text := “hello ” name
show reply

Where did the structure go?

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Add a requirement

We want that each name entered is greeted for a minimum of 1
second.

0. System: Prompts for name.

1. User: Types in name and enter.

2. System: Greets the user by name

3. System: Waits one second

4. Back to 0.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Add a requirement to “pull code”

proc main()

loop
print “What is your name”

var name := read
print “hello ” name
pause 1.0

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Add a requirement to inversion of control version

... var timer := new Timer(1.0)
proc main()

attach handler nameBox nameBoxHandler
attach handler timer timeHandler
show question ; show nameBox

proc timeHandler()
attach handler nameBox nameBoxHandler
stop timer ; show question ; show nameBox

proc nameBoxHander(event)
var name := nameBox.contents()
reply.text := “hello ” name ; show reply
hide question ; hide nameBox
detach handler nameBox nameBoxHandler
start timer

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Add a requirement

Code inflation:
Pull (console app) Push (IoC)
20% 100%

But the code inflation is not the main point.
It is that, with inversion of control, changes are all over the place.

I No structure.

I No procedural abstraction.

I New global state.

I New global invariants.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Add a requirement

Code inflation:
Pull (console app) Push (IoC)
20% 100%

But the code inflation is not the main point.
It is that, with inversion of control, changes are all over the place.

I No structure.

I No procedural abstraction.

I New global state.

I New global invariants.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Callback hell

Programmers have a name for programming with callbacks:
Callback hell
Why?

I Global state

I Often implicit state buried in objects like ‘timer’
I Typically undocumented global invariants

I “if Timer ‘timer’ is running, Label ‘question’ is not showing”

I It is unstructured.

I It defies procedural abstraction.

I All stories (use cases) are put into a blender.

I Lack of modularity, tracabilty, malleability, maintainability.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Callback hell

Programmers have a name for programming with callbacks:
Callback hell
Why?

I Global state

I Often implicit state buried in objects like ‘timer’
I Typically undocumented global invariants

I “if Timer ‘timer’ is running, Label ‘question’ is not showing”

I It is unstructured.

I It defies procedural abstraction.

I All stories (use cases) are put into a blender.

I Lack of modularity, tracabilty, malleability, maintainability.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Callback hell

Programmers have a name for programming with callbacks:
Callback hell
Why?

I Global state

I Often implicit state buried in objects like ‘timer’
I Typically undocumented global invariants

I “if Timer ‘timer’ is running, Label ‘question’ is not showing”

I It is unstructured.

I It defies procedural abstraction.

I All stories (use cases) are put into a blender.

I Lack of modularity, tracabilty, malleability, maintainability.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Writing pull code in a pushy world.

“The old dog barks backwards” – Robert Frost
I’m nostalgic.
I miss writing code that I can understand the next day.
The question:
Can we write pull code in a pushy world?

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Writing pull code in a pushy world.

“The old dog barks backwards” – Robert Frost
I’m nostalgic.
I miss writing code that I can understand the next day.
The question:
Can we write pull code in a pushy world?

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Monads to the rescue

A monad is a set of objects together with a sequencing operation.
Like a monoid but with a twist.
But I don’t have time to explain all about monads.
We’ll just look at the one that solves our problem.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Monads to the rescue

A monad is a set of objects together with a sequencing operation.
Like a monoid but with a twist.
But I don’t have time to explain all about monads.
We’ll just look at the one that solves our problem.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Take Back Control

The rest of the talk presents
a library called Take Back Control.

TBC is written in Haxe.
Haxe a Java-like language that can be translated into

I JavaScript

I Java

I C++

I C#

I Python

So the library can be used on a variety of platforms and from a
variety of languages.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Objects that represent actions

Objects of class Process can represent individual actions.

I exec(fred) is a Process that represents the action of calling
function fred.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Sequencing

Objects of class Process can also represent sequences of actions.

I exec(fred) > exec(ginger) is a Process that represents
the sequence of actions

I calling function fred
I and later calling function ginger

> is sequential composition.
In general a Process represents a set of sequences of individual
actions and events.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Sequencing

Objects of class Process can also represent sequences of actions.

I exec(fred) > exec(ginger) is a Process that represents
the sequence of actions

I calling function fred
I and later calling function ginger

> is sequential composition.
In general a Process represents a set of sequences of individual
actions and events.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Sequencing

Objects of class Process can also represent sequences of actions.

I exec(fred) > exec(ginger) is a Process that represents
the sequence of actions

I calling function fred
I and later calling function ginger

> is sequential composition.
In general a Process represents a set of sequences of individual
actions and events.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Processes produce results

In fact Process is parameterized by a type.
A Process<Int> object is a process that, when executed, outputs
an Int

Examples

I unit(42) is a Process<Int> that, when executed, produces
42

I If fred : Void -> Int is a function that, when called,
produces an Int then

I exec(fred) is a Process<Int> that, when executed,
produces an Int by calling fred

I exec(fred) > exec(ginger), when executed, produces the
result of calling ginger after calling fred.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Processes produce results

In fact Process is parameterized by a type.
A Process<Int> object is a process that, when executed, outputs
an Int

Examples

I unit(42) is a Process<Int> that, when executed, produces
42

I If fred : Void -> Int is a function that, when called,
produces an Int then

I exec(fred) is a Process<Int> that, when executed,
produces an Int by calling fred

I exec(fred) > exec(ginger), when executed, produces the
result of calling ginger after calling fred.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Processes produce results

In fact Process is parameterized by a type.
A Process<Int> object is a process that, when executed, outputs
an Int

Examples

I unit(42) is a Process<Int> that, when executed, produces
42

I If fred : Void -> Int is a function that, when called,
produces an Int then

I exec(fred) is a Process<Int> that, when executed,
produces an Int by calling fred

I exec(fred) > exec(ginger), when executed, produces the
result of calling ginger after calling fred.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Processes produce results

In fact Process is parameterized by a type.
A Process<Int> object is a process that, when executed, outputs
an Int

Examples

I unit(42) is a Process<Int> that, when executed, produces
42

I If fred : Void -> Int is a function that, when called,
produces an Int then

I exec(fred) is a Process<Int> that, when executed,
produces an Int by calling fred

I exec(fred) > exec(ginger), when executed, produces the
result of calling ginger after calling fred.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Processes may take time

I pause(1000) is a Process<Triv> that takes 1000
milliseconds to complete execution.
(Triv is a type that has only one value: null)

I exec(fred) > pause(1000) > exec(ginger), when
executed, produces the result of calling ginger 1 second after
calling fred.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Processes may take time

I pause(1000) is a Process<Triv> that takes 1000
milliseconds to complete execution.
(Triv is a type that has only one value: null)

I exec(fred) > pause(1000) > exec(ginger), when
executed, produces the result of calling ginger 1 second after
calling fred.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Processes may take time

I pause(1000) is a Process<Triv> that takes 1000
milliseconds to complete execution.
(Triv is a type that has only one value: null)

I exec(fred) > pause(1000) > exec(ginger), when
executed, produces the result of calling ginger 1 second after
calling fred.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Loops
If p is a Process<A> then loop(p) is (p>p>p>...)

Now we can implement our example

function main() {
var p =

loop (

clearText(nameBox) >

show(nameBox) >

show(question) >

getAndDisplayAnswer() > // Implement later.

hide(question) >

hide(nameBox) >

pause(1000)) ;

p.go(function(x:Triv){ }) ; // Execute p

}

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

go

So what is this go method?
If

I p : Process<A>

I k : A -> Void, i.e. a function with no result.

p.go(k) starts execution of process p and ensures that (when and
if the execution terminates) its output will be input to function k.
Examples

I If p is unit(42), then p.go(k) ≡ k(42)

I If p is exec(fred), then p.go(k) ≡ k(fred())

I if p is exec(fred) > pause(1000) > exec(ginger), then
p.go(k) calls fred and ensures that 1 second later
k(ginger()) is executed.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Implementing sequential composition

Suppose

I p : Process<A>

I q : Process

I k : B -> Void

p > q is an object r where
r.go(k) ≡ p.go(function(x:A){ q.go(k); })

That’s all there is to implementing sequential composition.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Bind

A useful variation on sequential composition is called bind
Suppose

I p : Process<A>

I f : A -> Process

then p >= f : Process

p >= f is a process that, when executed,

I executes p to get a result x

I and then executes f(x)

p >= f is an object r where
r.go(k) ≡ p.go(function(x:A){ f(x).go(k);})

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Guards and Guarded Processes

A Guard<E> object represents a set of events.
If

I g : Guard<E>

I p : Process<A>

then g && p : GuardedProcess<A>

A GuardedProcess<A> represents an set of sequences of actions
that can be triggered by a set of events.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Guards and Guarded Processes

Example
Suppose

I enter(nameBox) represents the event of the enter key in
nameBox

I getValue(nameBox) : Process<String>

then
enter(nameBox) && getValue(nameBox) is a guarded

process.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Await

If

I g : Guard<E>

I p : Process<A>

then await(g && p) : Process<A>

Executing await(g && p)

I events enabled

I event happens

I events are disabled

I p executes.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Finishing the example

function main() {
var p = ... >

loop (

... >

getAndDisplayAnswer() >

...) ;

p.go(function(x:Triv){}) ; }

function getAndDisplayAnswer() : Process<Triv> { return

await(enter(nameBox) && (getValue(nameBox)) >=

hello ; }

function hello(name : String) { return

putText(reply, "Hello "+name) ; }

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Choices

We can make a choice between guarded processes
await(gp || gq)

Await can wait for any of a number of events:

await(

enter(nameBox) && getValue(nameBox) >= hello

||

timeout(5000) && flash(question) > invoke(top)

)

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Fixed points

We can create loops that allow exits by using a fixed-point
operator:

function getAndDisplayAnswer() : Process<Triv> {
function f(top : Void -> Process<Triv>) { return

await(

enter(nameBox) && getValue(nameBox) >= hello

||

timeout(5000) && flash(question) > invoke(top)

) ; }
return fix(f) ;

}

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Conclusion

Question:
Can we write pull code in a pushy world?
Answer:
Yes, by using

I A suitable set of combinators

I inspired by context free grammars,

I process algebras, and

I monads

I to build structures representing

I sets of sequences of actions and events.

Thanks.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Conclusion

Question:
Can we write pull code in a pushy world?
Answer:
Yes, by using

I A suitable set of combinators

I inspired by context free grammars,

I process algebras, and

I monads

I to build structures representing

I sets of sequences of actions and events.

Thanks.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

Question Push versus pull. Take Back Control Conclusion

Conclusion

Question:
Can we write pull code in a pushy world?
Answer:
Yes, by using

I A suitable set of combinators

I inspired by context free grammars,

I process algebras, and

I monads

I to build structures representing

I sets of sequences of actions and events.

Thanks.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Take Back Control

	Question
	Push versus pull.
	Take Back Control
	Conclusion

