
Faster Searching by Elimination

Theodore S. Norvell

Electrical and Computer Engineering

Memorial University

December 26, 2010

Abstract

The SIMPLE system, under development at Memorial University, allows abstract problem

descriptions to be refined by abstract algorithms. By data refining both the problem and its

solution, we can reuse verified algorithms. We use binary search as an example of this method.

1 Introduction

The SIMPLE system [1], currently under development by the author, is a programming environ-
ment for interactively deriving programs from their specifications.

One of the goals is to allow the programmer to leverage abstraction to the greatest extend
possible. Abstraction allows one to concentrate on some aspects of a problem while ignoring others.
This paper illustrates how SIMPLE allows one to solve some aspects of algorithmic problems
without solving others. We will show how the SIMPLE language allows one to separate the
description and proof of an algorithmic technique from its application to particular problems and
data representations. This will allow a library of abstract problems and algorithmic techniques to
solve them to be built, stored, and later applied to concrete problems.

As an example, we will look at the algorithmic problem of search and the algorithmic technique
of binary search. We will then apply the technique to two concrete problems.

Although SIMPLE is still under development, this paper is intended to be a realistic exposition
of the capabilities that the SIMPLE language and system are expected to have, as well as an
exploration of the capabilities it will be required to have in order to meet its aspirations.

2 Search and Binary Search

The search problem we will look at is that of finding a value in a set that satisfies a given description

Definition Search ::=

require S ∩G �= ∅·
ensure x′ ∈ G

This specification consist of a precondition, S ∩ G �= ∅, that indicates that it is an assumption
that a solution exists within a search space S, and a postcondition that indicates that a solution
is to be placed in variable x. This specification is generic over an anonymous type for the variable
x. If the type of x is α, the type of S and G is set(α).

1

As in Hehner’s predicative programming approach [2, 3], each specification can be interpreted
as a boolean expression relating initial and final states, specifying which behaviours are acceptable.

Of course not all search problems fit this pattern; in particular it is often not known a priori

whether a solution exists.
The binary search algorithm can be given by

Definition BinarySearch ::=

while |S| > 1 inv S ∩G �= ∅
let S0, S1 | S = S0 ∪ S1·
(S0 ∩G �= ∅ → S := S0
[] S1 ∩G �= ∅ → S := S1)

require |S| = 1 ensure S = {x′}

The algorithm uses nondeterministic choice [] and guarded commands. A guarded command,
A→ P , ensures that its guard, A, is true before executing its body, P .

That this algorithm refines the search problem is expressed in SIMPLE as a theorem

Theorem Search � BinarySearch

The proof of this theorem will also be expressible in SIMPLE and the SIMPLE environment
will be able to check the proof. Note that � expresses a partial correctness relation, so that the
theorem means that any behaviour acceptable to BinarySearch is acceptable to Search.

3 Data Refinement

A data refinement [4, 5] of a specification P under an abstraction invariant I with variables v to
be removed is a predicate

drv;I P = ∀v · I ⇒ ∃v′ · I ′ ∧ P
Data refinement is a means of representing certain variables that occur in P with other variables.
For example, if we have a statement x := ¬x but we represent the boolean variable x with an
integer i under the abstraction invariant (x ∧ i = 0) ∨ (¬x ∧ i = 1) then the data refinement is

drx;(x∧i=0)∨(¬x∧i=1) (x := ¬x) = (i := 1− i)

Now let us look at two examples of applications of the binary search problem.

4 Application

4.1 Searching a sorted array

The classic example of binary search is that of searching a sorted array.
We can define what it is for an array to be sorted

Definition Sorted A ::= ∀i, j ∈ index(A) · i ≤ j ⇒ A i ≤ A j

Now the problem we wish to solve is searching a sorted array when we know the thing we are
looking for, p, is in the array.

Definition ArraySearch A p ::=

2

require Sorted A ∧ (∃x ∈ index(A) ·A i = p)
ensure A[x′] = p

In order to understand the array search problem as a concretization of the abstract search
problem, we need to relate their variables with an abstraction invariant. We use:

I = (S = {a, ..b} ∧G = {i ∈ index (A) | A i = p})

where {a, ..b} is the set of all integers greater or equal to a and less than b. Now data transforming
Search, we get

ArraySearch � require Sorted A · var a, b := 0, length(A) · drS,G;I(Search)

Where � represents refinement of specifications. That is P � Q means that any behaviour
accepted by Q is accepted by P .

As data refinement is monotonic with respect to refinement we have

ArraySearch � require Sorted A · var a, b := 0, length(A) · drS,G;I(Search)

� require Sorted A · var a, b := 0, length(A) · drS,G;I(BinarySearch)

The binary search under this data refinement is further refined by

while a+ 1 < b inv 〈∃i ∈ {a, ...b} ·Ai = p〉
let S0, S1 | {a, ..b} = S0 ∪ S1·
(〈∃i ∈ S0 ·A i = p〉 →

change a, b · ensure {a′, ..b′} = S0
[] 〈∃i ∈ S1 ·Ai = p〉 →

change a, b · ensure {a′, ..b′} = S1)

require a+ 1 = b ensure {a, ..b} = {x′}

Now sets S0 and S1 can be chosen such that S0 = {a, ..
⌊
a+b
2

⌋
} and S1 = {

⌊
a+b
2

⌋
, ..b} giving

algorithm

while b− a > 1 inv 〈∃i ∈ {a, ...b} ·Ai = p〉
(
〈
∃i ∈ {a, ..

⌊
a+b
2

⌋
} ·Ai = p

〉
→

b :=
⌊
a+b
2

⌋

[]
〈
∃i ∈ {

⌊
a+b
2

⌋
, ..b} ·Ai = p

〉
→

a :=
⌊
a+b
2

⌋
)

x := a

From the fact that A is sorted we can obtain that if A
⌊
a+b
2

⌋
> x

〈∃i ∈ {a, ..b} ·A i = p〉

=

〈
∃i ∈ {a, ..

⌊
a+ b

2

⌋
} ·A i = p

〉
∨
〈
∃i ∈ {

⌊
a+ b

2

⌋
, ..b} ·Ai = p

〉

=

〈
∃i ∈ {a, ..

⌊
a+ b

2

⌋
} ·A i = p

〉

and that if A
⌊
a+b
2

⌋
≤ x

3

〈∃i ∈ {a, ..b} ·A i = p〉

=

〈
∃i ∈ {a, ..

⌊
a+ b

2

⌋
} ·A i = p

〉
∨
〈
∃i ∈ {

⌊
a+ b

2

⌋
, ..b} ·Ai = p

〉

=

〈
∃i ∈ {

⌊
a+ b

2

⌋
, ..b} ·Ai = p

〉

Hence we can strengthen the guards to A
⌊
a+b
2

⌋
> x and A

⌊
a+b
2

⌋
≤ x respectively, after which

the body of the loop simplifies to

if A

⌊
a+ b

2

⌋
> x then b :=

⌊
a+ b

2

⌋
else a :=

⌊
a+ b

2

⌋

4.2 Calculating a square root

As a second example we will derive an algorithm for finding the integer part of the square root of
a natural number. The specification is

Definition Root y ::=

require y ∈ N
ensure x′ =

⌊√
y
⌋

We will determine the square root bit-by-bit, starting with the left-most bit. We represent the
set S using two natural numbers: x represents the bits calculated so far, while i represents the
number of bits yet to be calculated. Using an abstraction invariant

I =
(
S = {x2i, ..(x+ 1)2i} ∧G = {�√y�}

)

We get

Root y � var i := N · x := 0; drS,G;I Search � var i := N · x := 0; drS,G;I BinarySearch

where N ≥
⌈
log2

⌊√
y
⌋⌉

, i.e. N is enough bits to hold the answer.
The data refinement of the binary search algorithm gives

while i > 0 inv x2i ≤
⌊√
y
⌋
< (x+ 1) 2i

let S0, S1 | {x2i, ..(x+ 1)2i} = S0 ∪ S1·
(
⌊√
y
⌋
∈ S0 → change x, i · ensure {x′2i′ , ..(x′ + 1)2i

′} = S0
[]
⌊√
y
⌋
∈ S1 → change x, i · ensure {x′2i′ , ..(x′ + 1)2i

′} = S1)

We can pick S0 and S1 as {x2i, ..(2x+ 1)2i−1} and {(2x+ 1)2i−1, ..(x+ 1)2i}. This gives

while i > 0 inv x2i ≤
⌊√
y
⌋
< (x+ 1) 2i

(
⌊√
y
⌋
< (2x+ 1)2i−1 → x, i := 2x, i− 1

[]
⌊√
y
⌋
≥ (2x+ 1)2i−1 → x, i := 2x+ 1, i− 1)

4

Now we need to refine the guards

�√y� < (2x+ 1)2i−1

= Property of floor.
√
y < (2x+ 1)2i−1

= Property of square root

y <
(
(2x+ 1)2i−1

)2

= Algebra

y < 22ix2 + 22ix+ 22i−2

This gives a loop body of

if y < 22ix2 + 22ix+ 22i−2 then x, i := 2x, i− 1 else x, i := 2x+ 1, i− 1

Now this involves a number of multiplications, which we would like to get rid of. We can do
this by means of another data refinement, this time to introduce variables to track the three terms
in the guard.

J =
(
p = 22ix2 ∧ q = 22ix ∧ r = 22i−2

)

The initialization for these variables is

var p, q, r := 0, 0, 22N−2

The test becomes y < p+ q + r. The assignment x, i := 2x, i− 1 is transformed to

x
i
p
q
r

:=

2x
i− 1

22(i−1) (2x)2

22(i−1)2x
22(i−1)−2

which simplifies, by the abstraction invariant to

x
i
q
r

 :=

2x
i− 1
q/2
r/4

The assignment x, i := 2x+ 1, i− 1 is transformed to

x
i
p
q
r

:=

2x
i− 1
22ix2

22(i−1)x
22(i−1)−2

which simplifies to

x
i
p
q
r

:=

2x
i− 1
p+ q + r
q/2 + r
r/4

5

In summary we have

var i := N · x := 0;
while i > 0 inv x2i ≤

⌊√
y
⌋
< (x+ 1) 2i

if y < p+ q + r

x, i, q, r := 2x, i− 1, q/2, r/4

else

x, i, p, q, r := 2x, i− 1, p+ q + r, q/2 + r, r/4

All the divisions can be implemented as shifts. This algorithm is suitable for implementation
in either hardware or software.

5 Conclusion and related work

The methods presented here can be extended to other problems. For example, division of integers,
with the goal of a hardware suitable implementation.

The origins of this paper came with the realization that the principled strength reduction
method in [6] applied to a square root algorithm could be seen as a data refinement and then the
realization that the original algorithm could be seen as a data refinement of a more abstract binary-
search algorithm. The resulting abstract binary search algorithm turns out to be an abstraction
also of the Searching by Elimination algorithm presented in [7]. Their algorithm only eliminates a
single member of the search space in each loop, yielding algorithms with time complexities linear in
the search space size at best; my algorithm allows any subset of the search space to be eliminated,
which is faster; hence the title of this paper.

References

[1] Theodore Norvell and Zhikai Ding, “An environment for proving and programming,” in
Newfoundland Electrical and Computer Engineering Conference, October 1999.

[2] Eric C. R. Hehner, “Predicative programming,” Communications of the ACM, vol. 27, no. 2,
pp. 134—151, 1984.

[3] Eric C. R. Hehner, “Abstractions of time,” in A Classical Mind, A. W. Roscoe, Ed., chapter 12,
pp. 195—214. Prentice-Hall International, 1994.

[4] C. A. R. Hoare, “Proof of correctness of data representations,” Acta Informatica, vol. 1, pp.
271—281, 1972.

[5] David Gries and Jan Prins, “A new notion of encapsulation,” in SIGPLAN ’85 Symposium

on Language Issues in Programming, 1985, pp. 131—139.

[6] Yanhong A. Liu, “Principled strength reduction,” in Algorithmic Languages and Calculi,
Richard Bird and Lambert Meertens, Eds. IFIP, February 1997, pp. 357—381, Chapman and
Hall.

[7] Anne Kaldewaij and Berry Schoenmakers, “Searching by elimination,” Science of Computer

Programming, vol. 14, pp. 243—254, 1990.

6

