On the Implementability
of Behavioural Systems
(Preliminary Report)
Siu O’Young \& Theodore S. Norvell Memorial University of

Newfoundland
NECEC 1999

Goals

- Common formalism for
* continuous
* discrete
* discrete event
* hybrid
systems
- Common definitions of
* refinement
* composition
* implementability.

Specifying Behaviours

A specification is a pair of sets

$$
(U, B)
$$

where

- U is a universum - a set of possible things
- B is a set of acceptable things.

In modelling the behaviour of systems

- U is a set of behaviours

Continuous behaviours

U is the set of all functions from a continuous time domain T to a signal space W

$$
U=(T \rightarrow W)
$$

Examples

Classical signals and systems theory.

Logical Behaviours

U is the set of all finite sequences of symbols in a (finite)
alphabet Σ

$$
U=\Sigma^{*}
$$

Examples

- Finite State Automate
- Regular expressions
- Context-free Grammars

Synchronous (or Reactive) systems

U is the set of all sequences over sets of symbols

$$
U=\left(2^{\Sigma}\right)^{\omega}
$$

Batch Program Behaviours
U is the set of all pairs over a statespace S

$$
U=S \times S
$$

Examples
Statements in a computer language:

$$
x:=x+1
$$

modeled by

$$
B=\{(s, t) \mid t . x=s . x+1 \wedge \forall y \neq x \cdot t . y=s . y\}
$$

Specification and Refinement

We say that $\left(U, B_{I}\right)$ refines $\left(U, B_{S}\right)$ iff

$$
B_{I} \subseteq B_{S}
$$

The idea is that $\left(U, B_{S}\right)$ is a specification:

- a description of acceptable behaviour.

And $\left(U, B_{I}\right)$ is an proposed implementation

- or a step towards an implementation

Refinement means $\left(U, B_{I}\right)$ has no unacceptable behaviours.

Composition

The composition of two systems $\left(U, B_{0}\right)$ and $\left(U, B_{1}\right)$ is the result of them acting together.
The composition is defined as

$$
\left(U, B_{0} \cap B_{1}\right)
$$

For example, informally we want to know if plant + controller meets specification ?
This question becomes

$$
B_{P L A N T} \cap B_{\text {CONTROLLER }} \subseteq B_{\text {SPEC }}
$$

Implementability

Informally a specification is implementable if it is logically conceivable that it could be implemented. In particular the system must not force its input nor overdetermine its output.

- It is important to test a specification for implementability before trying to implement it with a real system.
- It is important that the operators of any programming language preserve implementability.

Example:

In Batch Program Behaviours

- Behaviours are input/output pairs and (U, B) is implementable iff

$$
\forall s \cdot \exists t \cdot(s, t) \in B
$$

Example:

In discrete event systems we partition the alphabet into input and output symbols

$$
\Sigma_{I N} \cup \Sigma_{O U T}=\Sigma \quad \Sigma_{I N} \cap \Sigma_{\text {OUT }}=\emptyset
$$

Now $\left(\Sigma^{*}, B\right)$ is implementable iff

$$
\forall s \in \bar{B} \cdot \forall \sigma \in \Sigma_{I N} \cdot s \sigma \in \bar{B}
$$

where \bar{B} is the set of all prefixes of strings in B.
I.e.

$$
s \in \bar{B} \Leftrightarrow \exists t \cdot s t \in B
$$

Breaking up the behaviours

We must be able to discriminate

- past from future and
- inputs from outputs

Assume there is a space of pasts

$$
U_{P}
$$

and a space of futures

$$
U_{F}
$$

and a partial function that puts them together

$$
\oplus: U_{P} \times U_{F} \rightarrow U
$$

Assume there is a space of inputs
U_{I}
and a space of outputs

$$
U_{O}
$$

and a partial function that puts them together

$$
\otimes: U_{I} \times U_{O} \rightarrow U
$$

Formalizing implementability

We say that a system (U, B) is implementable iff regardless of the past and of the future inputs, there is always a possible output. I.e. iff

$$
\forall s \in \bar{B} \cdot \forall i \in I_{s} \cdot \exists o \in O_{s} \cdot i \otimes o \in B
$$

where \bar{B} is the set of all pasts of B

$$
\bar{B}=\left\{s \in U_{P} \mid \exists t \in U_{F} \cdot s \oplus t \in B\right\}
$$

and I_{s} is the set of all inputs compatible with s

$$
I_{s}=\left\{i \in U_{I} \cdot \exists o \in U_{O} \cdot \exists t \in U_{F} \cdot i \otimes o=s \oplus t\right\}
$$

and O_{s} is the set of all outputs compatible with s

$$
O_{s}=\left\{o \in U_{O} \cdot \exists i \in U_{I} \cdot \exists t \in U_{F} \cdot i \otimes o=s \oplus t\right\}
$$

