Machine Code Programs are
Predicates Too

Theodore S. Norvell
norvell@es.toronto.edu
norvell@comlab.ox.ac.uk

Abstract

I present an interpretation of machine language programs as boolean
expressions. Source language programs may also be so interpreted. The
correctness of a code generator can then be expressed as a simple re-
lationship between boolean expressions. Code generators can then be
calculated from their specification.

1 Introduction

A predicate divides its domain in two. In the specification of computational
behaviour we wish to divide the set of all imaginable computationsin two parts:
acceptable computations and unacceptable computations. Predicates provide
a convenient way of expressing this division.

In this paper we are interested in two kinds of computational behaviour:
the behaviour specified by high level language programs in terms of source level
variables, and the behaviour specified by machine language programs in terms
of registers and memory. By using predicate logic as a common framework
to describe both forms of behaviour we can relate them and write down the
logical relationship that should exist between the input and output programs
of a compiler. This relationship serves as a specification from which we can
derive a code generator.

Except for the derivation of an example code generator, all proofs and
derivations have been omitted. Where proofs are not straight forward, an
outline is presented. Proofs of most of the theorems can be found in my thesis

[Norvell 1993].

2 Motivation

The problem of compiler correctness is clearly an important one for computer
reliability. The point of proving a high-level language program correct is di-
minished if that program is submitted to a compiler that is not correct. It can
be expected that a great many source programs will be submitted to a sin-
gle compiler. As the correct execution of all of them depends —potentially—
on the compiler, proving the compiler can be highly worthwhile. Furthermore
testing compilers is notoriously difficult, involving, as it does, either reasoning
about the machine code output or testing the object program; the former is
quite difficult and the latter is indirect and likely to fail to find all bugs.

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

Aside from this practical consideration, the problem is of interest to those
interested in the formalization of reasoning about programs. It involves the
interaction of two formal descriptions of language. one for the source language,
and one for the target language.

Quite a lot of previous research has been done on proving compilers and on
automatically producing compilers from formal descriptions of languages, for
example, [McCarthy and Painter 1967, Morris 1973, Milne and Strachey 1974,
Thatcher et al. 1980, Mosses 1980, Polak 1981, Manasse and Nelson 1984,
Hoare 1990, Sampaio 1993]. This research has employed almost the gamut of
approaches to formalizing reasoning about programs: operational, algebraic,
denotational.

The research presented below uses yet another approach —the predicative.
Reasoning about specification (including programs) represented by predicates
has proved to be a very effective way to develop correct programs. The question
is whether the predicative approach will yield a promising line of attack on
compiler correctness.

In addition the compiler correctness problem serves as an interesting case
study in the use of the predicative approach. This is another motivation.

As a first step towards compiler correctness, we will look at using predicates
to model machine programs. Quite apart from its application to compiler
correctness this aspect of the work has applications all its own. For example,
the resulting description of the CPU architecture could be used as a departure
point for developing a proved implementation of the CPU in hardware.

3 Notation

Among the numbers, we will be using mostly the integers, but sometimes the
naturals and the extended naturals. The extended naturals are the naturals
together with a single infinity value oo which is larger than all naturals.

The number operators (+, —, =, —, <, <, >, >) have their usual meanings.

A string is a sequence of items. The length of a string s is written #s. The
string of length zero is written as nil. A string of length one is equal to its sole
element. The catenation of two strings s and ¢ is written s;t.

The boolean operators (=, #, =, <, A, V, =) also have the usual definitions.
The expression = (b)) y for boolean b has value & when b is true and y when b
is false.

Function application is written f.z. The function (A\f - {(Az -y {z ==) f.z))
which mutates its functional argument is written x — y.

Other notations and terms will be introduced and explained as needed; but
for future reference, the precedence of all the operators is shown in Table 1.

/ariables will generally follow the following typing conventions. When they
do, I will feel free to omit mention of their types.

i instructions

s,t,u strings of instructions
n natural numbers nat
7, k.1 integers int

P,Q), R specifications

C,D

conditions

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

left associative

O & |1

+ - left associative
= —

; associative

@ !

o associative

(o) right associative
= # < < > 2

5

ANV lifting

= £ = <« lifting: = is right associative; < is left

associative; = and # are associative

Table 1: Precedence of operators

S, T,U source level specifications
V,W, X machine level specifications
f,g,h functions

4 Specifications

State spaces are sets of states. We will use two state spaces ¥ and M repre-
senting the source and machine level states respectively.
We will be particularly interested in functions of type

(Ex T xMx M) — bool

which will be called specifications. For convenience, specifications will be writ-
ten as boolean expressions with the variables (o and ¢’ of type ¥, and p and
p' of type M) representing their four parameters respectively. Accordingly the
substitution notation is used for applying or partially applying specifications.
For example, P7 is the application of P to x at parameter 0. As a special case
Pgﬁ;‘;, is notated by P’

A specification is called machine level if its value does not depend on the
value of the o and ¢’ parameters; and is called source level if its value does not
depend on the value of the p and p’ variables.

The boolean operators and constants are lifted pointwise to specification
operators and constants. Specifications may be compared with the operator

(P Q) = (Voyuo'ip' - P« Q)
In words, P -: () is written P is refined by Q. We write P :- () for @Q : P and
P - Qfor (P - Q) A (P @Q), which is equality of specifications. We define
the operator o on specifications as

Po Q .. <E|0'/l;/1,/l i PU';M’” A Qo;u >

II/. 11,11
o'p olip

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

This has an identity ok -+ o’;u’ = o;u. We will also have occasion to use
oky i+ p' = poand oks - o = 0.

In this paper we are interested in batch computations at either the source or
machine level. A batch computation consists of an initial and a final state. For
source level specifications, o represents the initial state and ¢’ the final state.
For machine level specifications, u represents the initial state and g’ the final
state. The predicates in

(I x X xMx M) — bool

that we are calling ‘specifications’ represent specifications in an informal
sense— by selecting those computations which are acceptable. The comparison
P - @ thus means that () accepts no computation that P does not accept, and
thus clearly deserves reading ‘P is refined by @)’. The least useful specification
is true, and the entirely miraculous specification is false.

Remark It should be clear from the above that unlike the
common convention in Z— specifications that allow infinite com-
putations are represented by weak predicates rather than strong
predicates.

5 Predicative semantics and source programs

A predicative semantics for a programming language (or a specification lan-
guage) is an interpretation of the members of that language as predicates.
This idea is illustrated with a source level language in this section and with a
machine level language on the next.

5.1 Abstract syntax

Our example source language is the very simple one shown in Table 2, in which
the syntactic variables are used as follows: S, T, and U range over statements;
E, F, and G range over expressions; v ranges over source variables; ¢ ranges
over constants (true, false, 0, —1, 1, ...); bop ranges over binary operators (+,
—, =, and, and or); wop ranges over unary operators (not and —); and ty
ranges over type constants (int, and bool).

The state space ¥ for this language is the cross product of the types of the
source variables. We denote the projections of o and ¢’ with the unprimed and
primed names of the source variables. Thus for a source variable z we write
2 to represent its value in the initial state and 2’ to represent its value in the
final state. Furthermore the substitution notation is extended so that —for
example— S% means ST _ where f is a function that leaves every component
of a state alone, except for which it sets to E.

Extra explanation This sounds rather complex, but it just
means that we can write a specification S that specifies the final
value of x is to be 1 more than its initial value as 2’ = x + 1,
and that the specification that says the final value of z is to be
three can be written as either @’ = 3 or, equivalently, S¥.

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

S — nil

.U

v:=F

if £ then T else U fi
while £ do T od

F — v

c

F bop G

wop F

Table 2: The abstract syntax of the source language.

nil okx;
T.U T-U
vi=F (okg)z,

if EthenTelseUfi T (E) U
while £ do T od see text

Table 3: The semantics of the source language.

One global source variable is always t, of type anat representing time; t,
represents the time at which a computation starts and t/ represents the time
at which the computation ends —at least in an abstract sense. It is assumed
there are no explicit references to t, in any program.

5.2 Semantics

We interpret each abstract syntax term as a specification according to table 3.
For example if the global source variables are z, y, z, t,,

(r=Ly:=y+x) = 2=1ANy =y+1 A=At =t,

while F do T od is defined using a method called the weakest progressive
pre-fizedpoint. Define the function wh from specifications to specifications by

whiU = (To(ty :i=t, +1)oU) {E) okx

Now we postulate that S, such that S -:- while £ do T od, has the following
three properties

t>t, =« S

wh.S - S

VU -(t,>t, = UYAwhU = U)= (S = U)) (1)
For example, it can be shown from this that while true do nilod -+ t/ = oco.

Further reading on predicative semantics may be found in [Hehner 1984],
[Hehner 1993], [Hoare 1992], and [Norvell 1993].

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

Remark Although predicative semantics is used in this paper
to represent specifications of batch computations, it should not
be inferred that it is limited to batch computations. One of
the strengths of the approach is its ability to handle interactive
computations.

6 A machine language and its semantics

In this section I present the semantics of a simple machine language. It should
be understood that this is to present a general method of defining machine lan-
guages. All the theorems of the paper which do not mention specific instructions
hold true for any machine language that meets the conditions spelled out in
Section 6.2.

The machine language semantics is presented in two parts: machine de-
pendent and machine independent. The machine dependent part defines the
structure of the machine level state space M, the instruction set, and axioms
defining the semantics of individual instructions. The machine independent
part consists of additional axioms that define how individual instructions act
together. Theorems based on the machine independent axioms are reusable for
all machine languages.

6.1 Machine dependent aspects
The example machine for this paper has a state space M of four components
e p :int The program counter.

o t, : xnat The time. The type xnat includes all natural numbers and a
special oo value larger than all natural numbers.

e ¢ : int The accumulator.
e m : int — int The memory.

Thus M is the product (int x xnat x int X (int — int)). The four projections
of jt are written p, t,, @, and m; and the four projections of p' as p’, t;“ a', and
m'.

Each instruction in the instruction set is a string of length one and is inter-
preted as a specification according to the axioms in Table 4. As a convenience,
we write x 1=\ E for (okM)wE with & any string of component names and E
an equal length string of expressions. Note that only backward and self jumps
are considered to take any time.

6.2 Assumptions about machine dependent aspects

We will make four assumptions about the machine dependent axioms. These
serve as the interface between the machine independent axioms and the machine
dependent ones. Each should be demonstrated about the machine dependent
axioms in order to ensure the applicability of the rest of the theory.

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

Axioms For any integer j,
enter j -+ pia:i=yv p+ 1;J
load j -+ pja =y p+ 1;m.j
addj =+ pia =y p+1lia+mg
storej - pym o=y p+L(j — a)m
jump g opit, = p ity + 1 {5 <0 ty)
zjumpj - pity i=vp+(J (a=0) 1);(ty+1 Ja=0Aj <0} t,)

Table 4: Axioms for instructions

Assumption M should possess a component p of a subtype of int and a
component t, of type xnat.

Assumption Machine Level. Each instruction ¢z should be a machine level
specification.

Assumption Implementability. For all instructions ¢

(V- (3 - 4))

Assumption Progress. For all instructions ¢

t,>t, o

n=

All theoremsin the remainder of Section 6 depend only on these assumptions
and machine independent axioms. None directly rely on any specifics of the
example machine presented.

6.3 Machine independent aspects

The machine independent axioms define the operators ‘!’ and ‘@Q’, which both
take a string of instructions and an integer and produce a specification.

6.3.1 The! operator.

The specification s ! [specifies the acceptable behaviour of a computer loaded
with instruction string s beginning at location ! in the program memory over
the execution of a single instruction. It is defined by the

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

Axioms
nil!l - true
st] (sUI)A (8114 #s)

The following theorems follow from these axioms and the assumptions.

Theorem Noninterference.

(I<p<l+#s)V (sl

Theorem Implementability.

(Vp - (T - s 11))

Theorem Progress.

t,>t, = (I<p<l+#s) A (s!)

6.3.2 The Q operator.

The specification s @ [describes the acceptable behaviour of a computer loaded
with string s beginning at location [over the time the instruction counter points
to instructions in s.

Definition For each s and each [we define the following function iter from
specifications to specifications

iter. V.. oo (sl V) (I <p <1+ #s) okm
A specification is a pre-fizedpoint of iter just if
iter. V. oV
A specification is a fizedpoint of iter just if

iter., V. -V

We define s @ [with the following axioms:

Axiom Construction. s @[is a pre-fixedpoint of iter.

iter.(s @) = s@l

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

Axiom Progression. s @Q [is progressive.

! . S
t, >t i sQl

Axiom Induction. s @ [is as weak as any progressive pre-fixedpoint of
iter.

(VV - (iter.V 0 V) A (t,>t, = V) = (s@l V)

These axioms are consistent by virtue of the Knaster-Tarski theorem [Tarski
1955].

The weakest progressive pre-fixedpoint of iter is also a fixedpoint. Indeed it
is the weakest progressive fixedpoint.

Theorem Fixedpoint. s @ [is a fixedpoint

iter.(s @[) - s@l

Theorem = Weakest progressive fixedpoint.

©

(VV - (iter.V = V) A (t, 2t, = V) => (s@l 2 V))

The following two theorems give a slightly more operational perspective.

Theorem Okness.

s@l=oky = (p<l)V (p>1++#s)

Theorem Single stepping.
io(syist@l) = syt @l 0 p=1+H#s

The specifications we get are reasonable in the sense of being implementable.

Theorem Implementability. (Vi - (3p - s @ 1)).

Proof sketch. If we can show there is one implementable and progressive pre-
fixedpoint of iter, then by the induction axiom, s @ [must also be imple-
mentable.

From the construction and progression axioms we know there is at least one
progressive pre-fixedpoint, implementable or not, namely s @ [. Let R be some
progressive pre-fixedpoint. Construct) as

Q -+ RV (=34 R) At, =)

It is trivial that @ is progressive and implementable and not hard to show it is
a pre-fixedpoint. a

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

Aslong as a computeris executing the code in a certain region of its program
memory, the contents of the rest of the program memory may be disregarded.

This is a crucial separation of concerns. It will be particularly important
when we are deriving code generators; it will mean that the object code can be
constructed by the code generator bit by bit rather than all at one go.

We can capture the idea formally with the following theorem.

Theorem Separation.

s;tiu @l v tQl+ F#sostu@l

Proof sketch [Cook 1993]. Consider a graph in which nodes are statesin ¥ x M
and there is an edge from p to g/ just when s!l. Then s @ [is satisfied by p
and g’ just when either there is a finite path from g to ¢’ on which g is the
only state in which =(I < p <1+ #s), or tiL = oo and there is an infinite path
from g on which for all states I < p <1+ #s.

Suppose p and p satisfy s;t;u @ [, there is a suitable path in the graph for
s;t;u @ [, this path can be divided at the first node where =(I + #s <p <1 +
#s + #t) to get paths that show the right hand side is satisfied. Likewise if
the right hand side is satisfied, that gives two paths that can be catenated to
show the left hand side is satisfied. o

7 Coupling source and machine levels

In order to use a machine to simulate source level computations, we will need
an example correspondence between source and machine states. This can be
represented by a specification R dependent on only ¢ and p.

An example of such a specification is given as follows. Let n be the number
of components, aside from t,, comprising ¥, and let v;, for 0 < j < n, refer to
component j. Define two one-one functions from integers

abs;,; : int — int
abs;,,;.i =1

absyoo; @ int — bool
absp,,.0 = false

absy,p.2 = true for ¢ # 0

and a one-one function from 0,...,n — 1 to memory addresses
addr : 0,....,.n — 1 — int
The R predicate is then
(te =t,) A (V) :0,....,n —1-v; =abs.(m.(addr.j)))

8 Code generator specification

Consider the following “thought experiment”. We wish to simulate the be-
haviour of a source program S starting in a state . We initialize a machine

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

to a state p that is related to ¢ by R and has p = I, and then run program
s @[, We check the final state p’ and consider all high-level states ¢’ that
correspond to it. If they all could be reached by running S, we say that s @/
has simulated S. If for all [and all initial states o, the specification s @ ! must
simulate the high level program S, then s is a suitable translation of S for the
given representation relation R.

We can easily formalize the thought experiment as the following definition

Definition We say that s stmulates S, in notation sim.s.S, just if

(Vioypu-RAp=1= (Vi'-s@l = (Vo' - R = S)))

In order to express this as refinement of either machine or source level
specifications, we define two operators parameterized by R.

PlS -+ (Voo -RAR' AP = S)
PV o (3up’ -RAR'APAYV)

When P is omitted, it defaults to true. Note that, for any P, (P1) and (P])
are functions related by the Galois property

(PLS = V)=(S =« P1V) (2)
The definition of sim.s.S can be rewritten as any of
(V- (p=DlS s@l) (3)
(VI-S = (p=D1(s@l))
1S « s@p

It is reasonable —on the grounds of the thought experiment— to insist on
the following restrictions on R.
(VI (Vo G R A p=1)
(V- (3o - R))
to=t, -+ R

It can easily be seen that the example R defined in Section 7 meets these three
requirements.

9 Prelude to code generator derivation

In the next section I will sketch the derivation of a code generator using the
example specifications of the machine language, source language, and represen-
tation relation described above. The goal is to derive a function C such that
for all abstract syntax terms S

sim.(C.5).5

Before doing so we need a number of results relating some of the concepts
defined above.

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

9.1 Nice strings

A little thought shows that sim.t.T" A sim.«.U does not —as one might hope—
imply sim.(t;u).(T;U) The difficulty is that ¢ need not leave the program
counter pointing to the first instruction of w.

It is not possible to simply add the requirement that

P=ptgts 0 osQp
for all strings s generated by our code generator, because it is quite possible
that s @ p will loop forever. If a program is executed from a state from which it
may take an infinite amount of time, it can not be expected to set the program
counter to a particular value. This is a consequence of our choice of the weakest
progressive prefixed point.
So we make the following definition

Definition A string s is called nice just if
pY=p+Hs 2 sQp A t;l;éoo

We notate this as Os.

Definition A string s will be a correct compilation of an abstract syntax
term S just if

sim.s.S

Qs

9.2 Useful facts

Because R defines a function onto the source state space, it has some useful
manipulative properties.

Theorem (4) | over o. For specifications P and @
(PoQ) = |Po|Q

Theorem (5) If P is a machine level condition,

e {p) k) - lQ(P) IR

Definition A specification V is explosive just if

=00 = V)

FAp' - t, =00 AV) = (V- t,

"
That is, just if for all initial states for which V' does not specify termination,
V does not specify anything stronger than progressiveness. The notation &V
will be used to say that V is explosive.

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

Theorem Source explosiveness. For all abstract syntax terms S, we have

|5

Clearly, if Os and Qt, then O(s;¢). Furthermore, Onil so nice strings form
a submonoid of the strings. But we can also see that if s;¢ is started at its
beginning and terminates then it will execute by first executing s and then ¢.

Theorem (6) Nice catenation. If
o Os, Ot, &V, W,
oV = s@p
oW o t@p

then VoW - st @p.

Theorem (7) Storing.

l((Ok);ES ,) = storeaddr.m @p

Theorem (8) Jumping. If
o Us, Ot, &V, W,
oV = s@p
oW - t@p
then
V{a£0) W - w@p
where u = zjump (2 + #s); s;jump (1 + #t);t

Notation

mtick - d =a Am'=m At =t+1

Theorem (9) Looping. If
o OUs, O, &V, W,
oV o s@p
oW - t@p

then Vo (W o mtick o w @1 {a # 0) oky) = w @I where u = s;zjump (2 +
F#t);t;jump (=1 — #t — #s)

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

Theorem (10) The expression theorem. If f is a function from either the
integers or the booleans to source level specifications, and E is an expression
of the right type, then

[-E - (abs.d' = E A okx)o f.(abs.a)

9.3 Expression correctness

We will say that a string e is a correct compilation of an expression F just if

(Vi-(p=1l(abs.a’ = E A oky) - e@l)
Qe

10 Code generator derivation

Throughout this section, we will assume as induction hypotheses that ¢ is a
correct compilation of T, u is a correct compilation of U, and e is a correct
compilation of F.

The goal is to find a correct compilation of program S whatever its form.

10.1 The nil statement
We have S = nil

l()l\’}z {l()l\’}g . Ok‘M}
okwm
nil @ p

10.2 The sequential composition statement
We have S =T, U.

T -T) {] over o (4)}
T U {nice catenation (6), induction hypotheses}
tiu @p

So C.(5;T) can be C.5;C.T.

10.3 The assignment statement
We have S = (v, 1= F).

L((oks)3™) {the expression theorem (10)}
l((abs.a’ = E A oky) o (ka);gs.a) {l over o (4)}
l(abs.a’ = E A oksx) o l((okg)ags 2

{storing (7), nice catenation (6), induction hypotheses}
e; store addr.m

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

10.4 The if statement
We have S = if F then T else U fi.

WT (E) U) {the expression theorem (10)} ;
l((abs.clbl =FE A okx) o (T {(abs.a) U)) {1l overo (4)}
l(abs.a’ = E A oky) o [(T {abs.a) U) {Lover {) (5)}

l(abs.a’ = E A oksx) o (|T {abs.a) |U)
{jumping (8); nice catenation (6), induction hypotheses}
e;zjump 2 + #t; 6 jump 1 + #uju @ p

10.5 The while statement
We have S = while £ do T od.

Now (3) says we want an s such that
(p=0lS - sal

From the laws about while loops, only one has S on the left-hand side of a *-:":
induction. But to use induction requires the S to be isolated.

{Galois connection (2)}
= S = (p=01(sQl)
Let U =(p=01)1(s @) and apply (1).
< ({t,>t, =« U)A(whU - U)

The first conjunct easily reduces to true. The derivation continues with the
second conjunct:

{definition wh and U}

= To(ty i=ste+1)o(p=D1(sQl) (E]) oks = (p=0D1(sQI)
{Galois connection (2)}

= (p=DITo(ty =xte+1)o(p=D1(s@QI) {E) oky. - s@l

The remainder of the derivation is fairly straight forward and works towards
being able to apply the looping theorem (9) to finally get

< s=-e;zjump 2 + #t;t;jump — 1 — #t — #e

10.6 Summary of the compiler

Assuming the existence of a correct code generator CE for expressions, the
results of this section constitute a proof that the compiler

Cnil = nil
C(T;U) = CI;CU
C.(v., := E) = CE.E;store addr.m

C.(if EthenTelse U fi) = CE.E;zjump 2+ #C.T;C.T;
jump 1 + #C.U; C.U

CE.E;zjump 2 + #C. T, C.T;
jump — 1 — #C.T — #CE.E

C.(while E do T od)

is correct.

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

11 Conclusion

In the preceding I have outlined an approach to the predicative semantics of
machine code and given a small example of its application to the specification
and derivation of a simple compiler. Obviously, the compiler arrived at ahove
could be written informally with much less effort. But, the simple compiler of
the paper is only an example. The specification of the compiler is generic; it is
valid for all source languages, machine languages, and representation relations,
provided the semantics of the source language is given predicatively, and the
machine language and representation relation meet the conditions mentioned
in the paper. Similarly, most of the theorems used in the derivation of the
compiler are generic and the techniques used in the derivation are reusable.

Along the way to compiler correctness we have developed a predicative inter-
pretation for machine languages. Although it is illustrated by a simple machine
language, it is suitable for machine languages with more complex instruction
sets and more complex state spaces. This predicative interpretation may also
be employed for other problems such as processor verification and reasoning
about hand coded machine code.

Clearly there is work to be done on using the framework presented above
for more elaborate and realistic source and target languages, for dealing with
optimizing compilers, and for automating some of the theorem proving. These
and other topics are further addressed in [Norvell 1993].

Acknowledgements

I would like to thank He Jifeng for helping me understand while loops, and Steve
Cook for providing a superior proof of the separation theorem. I especially
thank Ric Hehner, not only for many specific contributions to this paper, but
also for many years of guidance and support in many ways. I am grateful to
the Natural Sciences and Engineering Research Council for financial support,
the Computing Laboratory at Oxford for logistical support, and especially to
the Department of Computer Science at the University of Toronto for providing
both.

References

[Cook 1993] Stephen A. Cook, 1993. Personal Communication.

[Hehner 1984] Eric C.R. Hehner. Predicative programming. Communications

of the ACM, 27(2):134 151, 1984.

[Hehner 1993] Eric C.R. Hehner. A Practical Theory of Programming. Spring-
er-Verlag, 1993.

[Hoare 1990] C.A.R. Hoare. Refinement algebra proves correctness of compiling
specifications. Technical Report PRG-TR-6-90, Oxford University Comput-
ing Laboratory, Oxford University, 1990.

[Hoare 1992] C.A.R Hoare. Programs are predicates. In Meeting of the Fifth
Generation Project. ICOT, 1992.

6th Refinement Workshop, David Till (Ed.), pp. 188204, Springer-Verlag, 1994.

[Jones 1980] Neil D. Jones, editor. Semantics-Directed Compiler Generation.
Number 94 in Lecture Notes in Computer Science. Springer-Verlag, 1980.

[Manasse and Nelson 1984] Mark Manasse and Greg Nelson. Correct compila-
tion of control structures. Technical Report Technical Memorandum 11272-

840909-09TM, AT&T Bell Laboratories, 1984.

[McCarthy and Painter 1967] J. McCarthy and J. Painter. Correctness of a
compiler for arithmetic expressions. In Proceedings of Symposia in Applied
Mathematics, Volume XIX, 1967.

[Milne and Strachey 1974] R. E. Milne and C. Strachey, editors. A Theory of

Programming Language Sernantics. Chapman & Hall, London, 1974.

[Morris 1973] F. Lockwood Morris. Advice on structuring compilers and prov-
ing them correct. In Proceedings of the ACM Conferfence on Principles of
Programming Languages, 1973.

[Mosses 1980] Peter D. Mosses. A constructive approach to complier correct-
ness. In [Jones 1980]. 1980.

[Norvell 1993] Theodore S. Norvell. A Predicative Theory of Machine Lan-
guages and its Application to Compiler Correctness. PhD thesis, University
of Toronto, 1993.

[Polak 1981] Wolfgang Polak. Compiler Specification and Verification. Number
124 in Lecture Notes in Computer Science. Springer-Verlag, 1981. Also a
Stanford Ph.D. thesis.

[Sampaio 1993] Augusto Sampaio. An Algebraic Approach to Compiler Design.
PhD thesis, Oxford University, 1993.

[Tarski 1955] Alfred Tarski. A lattice-theoretical fixpoint theorem and its ap-
plications. Pacific Journal of Mathematics, 5:285 309, 1955.

[Thatcher et al. 1980] James W. Thatcher, Eric G. Wagner, and Jesse B.
Wright. More advice on structuring compilers and proving them correct.

In [Jones 1980]. 1980.

