
Machine Code Programs are
Predicates Too

Theodore S� Norvell

norvell�cs�toronto�edu

norvell�comlab�ox�ac�uk

Abstract

I present an interpretation of machine language programs as boolean
expressions� Source language programs may also be so interpreted� The
correctness of a code generator can then be expressed as a simple re�
lationship between boolean expressions� Code generators can then be
calculated from their speci�cation�

� Introduction

A predicate divides its domain in two� In the speci�cation of computational
behaviour we wish to divide the set of all imaginable computations in two parts�
acceptable computations and unacceptable computations� Predicates provide
a convenient way of expressing this division�

In this paper we are interested in two kinds of computational behaviour�
the behaviour speci�ed by high level language programs in terms of source level
variables� and the behaviour speci�ed by machine language programs in terms
of registers and memory� By using predicate logic as a common framework
to describe both forms of behaviour we can relate them and write down the
logical relationship that should exist between the input and output programs
of a compiler� This relationship serves as a speci�cation from which we can
derive a code generator�

Except for the derivation of an example code generator� all proofs and
derivations have been omitted� Where proofs are not straight forward� an
outline is presented� Proofs of most of the theorems can be found in my thesis
�Norvell ���	
�

� Motivation

The problem of compiler correctness is clearly an important one for computer
reliability� The point of proving a high�level language program correct is di�
minished if that program is submitted to a compiler that is not correct� It can
be expected that a great many source programs will be submitted to a sin�
gle compiler� As the correct execution of all of them depends �potentially�
on the compiler� proving the compiler can be highly worthwhile� Furthermore
testing compilers is notoriously di
cult� involving� as it does� either reasoning
about the machine code output or testing the object program� the former is
quite di
cult and the latter is indirect and likely to fail to �nd all bugs�

�

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

Aside from this practical consideration� the problem is of interest to those
interested in the formalization of reasoning about programs� It involves the
interaction of two formal descriptions of language� one for the source language�
and one for the target language�

Quite a lot of previous research has been done on proving compilers and on
automatically producing compilers from formal descriptions of languages� for
example� �McCarthy and Painter ����� Morris ���	� Milne and Strachey �����
Thatcher et al� ����� Mosses ����� Polak ����� Manasse and Nelson �����
Hoare ����� Sampaio ���	
� This research has employed almost the gamut of
approaches to formalizing reasoning about programs� operational� algebraic�
denotational�

The research presented below uses yet another approach �the predicative�
Reasoning about speci�cation �including programs� represented by predicates
has proved to be a very e�ective way to develop correct programs� The question
is whether the predicative approach will yield a promising line of attack on
compiler correctness�

In addition the compiler correctness problem serves as an interesting case
study in the use of the predicative approach� This is another motivation�

As a �rst step towards compiler correctness� we will look at using predicates
to model machine programs� Quite apart from its application to compiler
correctness this aspect of the work has applications all its own� For example�
the resulting description of the CPU architecture could be used as a departure
point for developing a proved implementation of the CPU in hardware�

� Notation

Among the numbers� we will be using mostly the integers� but sometimes the
naturals and the extended naturals� The extended naturals are the naturals
together with a single in�nity value � which is larger than all naturals�

The number operators ��� �� �� �� �� �� �� �� have their usual meanings�
A string is a sequence of items� The length of a string s is written �s� The

string of length zero is written as nil� A string of length one is equal to its sole
element� The catenation of two strings s and t is written s� t�

The boolean operators ��� ��� �� �� 	�
� �� also have the usual de�nitions�
The expression x hjbji y for boolean b has value x when b is true and y when b
is false�

Function application is written f�x� The function h�f � h�z � y hjz � xji f�zii
which mutates its functional argument is written x
� y�

Other notations and terms will be introduced and explained as needed� but
for future reference� the precedence of all the operators is shown in Table ��

Variables will generally follow the following typing conventions� When they
do� I will feel free to omit mention of their types�

i instructions
s� t� u strings of instructions
n natural numbers nat
j� k� l integers int
P�Q�R speci�cations
C�D conditions

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

� left associative
� � � � �
� � left associative
��
�
� associative
� �
� associative
hjbji right associative
� �� � � � �
�
	
 lifting
� �� � � lifting� � is right associative� � is left

associative� � and �� are associative
��� �� ��

Table �� Precedence of operators

S� T� U source level speci�cations
V�W�X machine level speci�cations
f� g� h functions

� Speci�cations

State spaces are sets of states� We will use two state spaces � and M repre�
senting the source and machine level states respectively�

We will be particularly interested in functions of type

�� � � � M � M� � bool

which will be called speci�cations� For convenience� speci�cations will be writ�
ten as boolean expressions with the variables �� and �� of type �� and � and
�� of type M� representing their four parameters respectively� Accordingly the
substitution notation is used for applying or partially applying speci�cations�
For example� P �

x is the application of P to x at parameter �� As a special case
P
���
����� is notated by P ��

A speci�cation is called machine level if its value does not depend on the
value of the � and �� parameters� and is called source level if its value does not
depend on the value of the � and �� variables�

The boolean operators and constants are lifted pointwise to speci�cation
operators and constants� Speci�cations may be compared with the operator

�P �� Q� � h���������� � P � Qi

In words� P �� Q is written P is re�ned by Q� We write P �� Q for Q �� P and
P ��� Q for �P �� Q� 	 �P �� Q�� which is equality of speci�cations� We de�ne
the operator � on speci�cations as

P � Q ��� h�������� � P �����

������� 	 Q
���
�������i

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

This has an identity ok ��� ����� � ���� We will also have occasion to use
okM ��� �� � � and ok� ��� �� � ��

In this paper we are interested in batch computations at either the source or
machine level� A batch computation consists of an initial and a �nal state� For
source level speci�cations� � represents the initial state and �� the �nal state�
For machine level speci�cations� � represents the initial state and �� the �nal
state� The predicates in

�� � � � M � M� � bool

that we are calling �speci�cations represent speci�cations �in an informal
sense� by selecting those computations which are acceptable� The comparison
P �� Q thus means that Q accepts no computation that P does not accept� and
thus clearly deserves reading �P is re�ned by Q � The least useful speci�cation
is true� and the entirely miraculous speci�cation is false�

Remark It should be clear from the above that �unlike the
common convention in Z� speci�cations that allow in�nite com�
putations are represented by weak predicates rather than strong
predicates�

� Predicative semantics and source programs

A predicative semantics for a programming language �or a speci�cation lan�
guage� is an interpretation of the members of that language as predicates�
This idea is illustrated with a source level language in this section and with a
machine level language on the next�

��� Abstract syntax

Our example source language is the very simple one shown in Table �� in which
the syntactic variables are used as follows� S� T � and U range over statements�
E� F � and G range over expressions� v ranges over source variables� c ranges
over constants �true� false� �� ��� �� ����� bop ranges over binary operators ���
�� �� and� and or�� uop ranges over unary operators �not and ��� and ty
ranges over type constants �int� and bool��

The state space � for this language is the cross product of the types of the
source variables� We denote the projections of � and �� with the unprimed and
primed names of the source variables� Thus for a source variable x we write
x to represent its value in the initial state and x� to represent its value in the
�nal state� Furthermore the substitution notation is extended so that �for
example� SxE means S�f�� where f is a function that leaves every component
of a state alone� except for x which it sets to E�

Extra explanation This sounds rather complex� but it just
means that we can write a speci�cation S that speci�es the �nal
value of x is to be � more than its initial value as x� � x � ��
and that the speci�cation that says the �nal value of x is to be
three can be written as either x� � 	 or� equivalently� Sx� �

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

S � nil
j T �U
j v �� E
j if E then T else U �
j while E do T od

E � v
j c
j F bop G
j uop F

Table �� The abstract syntax of the source language�

nil ok�
T �U T � U
v �� E �ok��vE
if E then T else U � T hjEji U
while E do T od see text

Table 	� The semantics of the source language�

One global source variable is always t� of type xnat representing time� t�
represents the time at which a computation starts and t�� represents the time
at which the computation ends �at least in an abstract sense� It is assumed
there are no explicit references to t� in any program�

��� Semantics

We interpret each abstract syntax term as a speci�cation according to table 	�
For example if the global source variables are x� y� z� t��

�x �� �� y �� y � x� ��� x� � � 	 y� � y � � 	 z� � z 	 t�� � t�

while E do T od is de�ned using a method called the weakest progressive
pre��xedpoint� De�ne the function wh from speci�cations to speci�cations by

wh�U ��� �T � �t� �� t� � �� � U� hjEji ok�

Now we postulate that S� such that S ��� while E do T od� has the following
three properties

t�� � t� �� S

wh�S �� S

h�U � �t�� � t� �� U� 	 �wh�U �� U� � �S �� U�i ���

For example� it can be shown from this thatwhile true do nil od ��� t�� � ��
Further reading on predicative semantics may be found in �Hehner ����
�

�Hehner ���	
� �Hoare ����
� and �Norvell ���	
�

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

Remark Although predicative semantics is used in this paper
to represent speci�cations of batch computations� it should not
be inferred that it is limited to batch computations� One of
the strengths of the approach is its ability to handle interactive
computations�

� A machine language and its semantics

In this section I present the semantics of a simple machine language� It should
be understood that this is to present a general method of de�ning machine lan�
guages� All the theorems of the paper which do not mention speci�c instructions
hold true for any machine language that meets the conditions spelled out in
Section ����

The machine language semantics is presented in two parts� machine de�
pendent and machine independent� The machine dependent part de�nes the
structure of the machine level state space M� the instruction set� and axioms
de�ning the semantics of individual instructions� The machine independent
part consists of additional axioms that de�ne how individual instructions act
together� Theorems based on the machine independent axioms are reusable for
all machine languages�

��� Machine dependent aspects

The example machine for this paper has a state space M of four components

� p � int The program counter�

� t� � xnat The time� The type xnat includes all natural numbers and a
special � value larger than all natural numbers�

� a � int The accumulator�

� m � int � int The memory�

Thus M is the product �int � xnat � int � �int � int��� The four projections
of � are written p� t�� a� and m� and the four projections of �� as p�� t��� a�� and
m��

Each instruction in the instruction set is a string of length one and is inter�
preted as a speci�cation according to the axioms in Table �� As a convenience�
we write x ��M E for �okM �xE with x any string of component names and E
an equal length string of expressions� Note that only backward and self jumps
are considered to take any time�

��� Assumptions about machine dependent aspects

We will make four assumptions about the machine dependent axioms� These
serve as the interface between the machine independent axioms and the machine
dependent ones� Each should be demonstrated about the machine dependent
axioms in order to ensure the applicability of the rest of the theory�

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

Axioms For any integer j�

enter j ��� p� a ��M p � �� j

load j ��� p� a ��M p � ��m�j

add j ��� p� a ��M p � �� a � m�j

store j ��� p�m ��M p � �� �j
� a��m

jump j ��� p� t� ��M p � j� �t� � � hjj � �ji t��

zjump j ��� p� t� ��M p � �j hja � �ji ��� �t� � � hja � � 	 j � �ji t��

Table �� Axioms for instructions

Assumption M should possess a component p of a subtype of int and a
component t� of type xnat�

Assumption Machine Level� Each instruction i should be a machine level
speci�cation�

Assumption Implementability� For all instructions i

h�� � h��� � iii

Assumption Progress� For all instructions i

t�� � t� �� i

All theorems in the remainder of Section � depend only on these assumptions
and machine independent axioms� None directly rely on any speci�cs of the
example machine presented�

��� Machine independent aspects

The machine independent axioms de�ne the operators �� and �� � which both
take a string of instructions and an integer and produce a speci�cation�

����� The � operator�

The speci�cation s � l speci�es the acceptable behaviour of a computer loaded
with instruction string s beginning at location l in the program memory over
the execution of a single instruction� It is de�ned by the

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

Axioms

nil � l ��� true

i � l ��� �p � l� � i

s� t � l ��� �s � l� 	 �t � l � �s�

The following theorems follow from these axioms and the assumptions�

Theorem Noninterference�

�l � p � l � �s�
 �s � l�

Theorem Implementability�

h�� � h��� � s � lii

Theorem Progress�

t�� � t� �� �l � p � l � �s� 	 �s � l�

����� The � operator�

The speci�cation s � l describes the acceptable behaviour of a computer loaded
with string s beginning at location l over the time the instruction counter points
to instructions in s�

De�nition For each s and each l we de�ne the following function iter from
speci�cations to speci�cations

iter�V ��� �s � l � V � hjl � p � l � �sji okM

A speci�cation is a pre��xedpoint of iter just if

iter�V �� V

A speci�cation is a �xedpoint of iter just if

iter�V ��� V

We de�ne s � l with the following axioms�

Axiom Construction� s � l is a pre��xedpoint of iter�

iter��s � l� �� s � l

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

Axiom Progression� s � l is progressive�

t�� � t� �� s � l

Axiom Induction� s � l is as weak as any progressive pre��xedpoint of
iter�

h�V � �iter�V �� V � 	 �t�� � t� �� V � � �s � l �� V �i

These axioms are consistent by virtue of the Knaster�Tarski theorem �Tarski
��!!
�

The weakest progressive pre��xedpoint of iter is also a �xedpoint� Indeed it
is the weakest progressive �xedpoint�

Theorem Fixedpoint� s � l is a �xedpoint

iter��s � l� ��� s � l

Theorem Weakest progressive �xedpoint�

h�V � �iter�V �� V � 	 �t�� � t� �� V � � �s � l �� V �i

The following two theorems give a slightly more operational perspective�

Theorem Okness�

s � l � okM �� �p � l�
 �p � l � �s�

Theorem Single stepping�

i � �s� i� t � l� � s� i� t � l �� p � l � �s

The speci�cations we get are reasonable in the sense of being implementable�

Theorem Implementability� h�� � h��� � s � lii�

Proof sketch� If we can show there is one implementable and progressive pre�
�xedpoint of iter� then by the induction axiom� s � l must also be imple�
mentable�

From the construction and progression axioms we know there is at least one
progressive pre��xedpoint� implementable or not� namely s � l� Let R be some
progressive pre��xedpoint� Construct Q as

Q ��� R
 ��h��� � Ri 	 t�� � ��

It is trivial that Q is progressive and implementable and not hard to show it is
a pre��xedpoint� �

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

As long as a computer is executing the code in a certain region of its program
memory� the contents of the rest of the program memory may be disregarded�

This is a crucial separation of concerns� It will be particularly important
when we are deriving code generators� it will mean that the object code can be
constructed by the code generator bit by bit rather than all at one go�

We can capture the idea formally with the following theorem�

Theorem Separation�

s� t�u � l ��� t � l � �s � s� t�u � l

Proof sketch �Cook ���	
� Consider a graph in which nodes are states in � � M
and there is an edge from � to �� just when s � l� Then s � l is satis�ed by �
and �� just when either there is a �nite path from � to �� on which �� is the
only state in which ��l � p � l � �s�� or t�� � � and there is an in�nite path
from � on which for all states l � p � l � �s�

Suppose � and �� satisfy s� t�u � l� there is a suitable path in the graph for
s� t�u � l� this path can be divided at the �rst node where ��l � �s � p � l �
�s � �t� to get paths that show the right hand side is satis�ed� Likewise if
the right hand side is satis�ed� that gives two paths that can be catenated to
show the left hand side is satis�ed� �

� Coupling source and machine levels

In order to use a machine to simulate source level computations� we will need
an example correspondence between source and machine states� This can be
represented by a speci�cation R dependent on only � and ��

An example of such a speci�cation is given as follows� Let n be the number
of components� aside from t�� comprising �� and let vj � for � � j � n� refer to
component j� De�ne two one�one functions from integers

absint � int � int

absint�i � i

absbool � int � bool

absbool�� � false

absbool�i � true for i �� �

and a one�one function from �� ���� n � � to memory addresses

addr � �� ���� n � � � int

The R predicate is then

�t� � t�� 	 h�j � �� ���� n � � � vj � abs��m��addr�j��i

	 Code generator speci�cation

Consider the following "thought experiment#� We wish to simulate the be�
haviour of a source program S starting in a state �� We initialize a machine

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

to a state � that is related to � by R and has p � l� and then run program
s � l� We check the �nal state �� and consider all high�level states �� that
correspond to it� If they all could be reached by running S� we say that s � l
has simulated S� If for all l and all initial states �� the speci�cation s � l must
simulate the high level program S� then s is a suitable translation of S for the
given representation relation R�

We can easily formalize the thought experiment as the following de�nition

De�nition We say that s simulates S� in notation sim�s�S� just if

h�l���� � R 	 p � l � h��� � s � l � h��� � R� � Siii

In order to express this as re�nement of either machine or source level
speci�cations� we de�ne two operators parameterized by R�

P�S ��� h����� � R 	 R� 	 P � Si

P�V ��� h����� � R 	 R� 	 P 	 V i

When P is omitted� it defaults to true� Note that� for any P � �P�� and �P��
are functions related by the Galois property

�P�S �� V � � �S �� P�V � ���

The de�nition of sim�s�S can be rewritten as any of

h�l � �p � l��S �� s � li �	�

h�l � S �� �p � l���s � l�i

�S �� s � p

It is reasonable �on the grounds of the thought experiment� to insist on
the following restrictions on R�

h�l � h�� � h�� � R 	 p � liii

h�� � h��� � Rii

t� � t� �� R

It can easily be seen that the example R de�ned in Section � meets these three
requirements�

 Prelude to code generator derivation

In the next section I will sketch the derivation of a code generator using the
example speci�cations of the machine language� source language� and represen�
tation relation described above� The goal is to derive a function C such that
for all abstract syntax terms S

sim��C�S��S

Before doing so we need a number of results relating some of the concepts
de�ned above�

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

��� Nice strings

A little thought shows that sim�t�T 	 sim�u�U does not �as one might hope�
imply sim��t�u���T �U� The di
culty is that t need not leave the program
counter pointing to the �rst instruction of u�

It is not possible to simply add the requirement that

p� � p � �s �� s � p

for all strings s generated by our code generator� because it is quite possible
that s � p will loop forever� If a program is executed from a state from which it
may take an in�nite amount of time� it can not be expected to set the program
counter to a particular value� This is a consequence of our choice of the weakest
progressive pre�xed point�

So we make the following de�nition

De�nition A string s is called nice just if

p� � p � �s �� s � p 	 t�� �� �

We notate this as �s�

De�nition A string s will be a correct compilation of an abstract syntax
term S just if

sim�s�S

�s

��� Useful facts

Because R de�nes a function onto the source state space� it has some useful
manipulative properties�

Theorem ��� � over �� For speci�cations P and Q

��P � Q� �� �P � �Q

Theorem �!� If P is a machine level condition�

��Q hjP ji R� ��� �Q hjP ji �R

De�nition A speci�cation V is explosive just if

h��� � t�� � � 	 V i �� h��� � t�� � � � V i

That is� just if for all initial states for which V does not specify termination�
V does not specify anything stronger than progressiveness� The notation �V
will be used to say that V is explosive�

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

Theorem Source explosiveness� For all abstract syntax terms S� we have
��S�

Clearly� if �s and �t� then ��s� t�� Furthermore� �nil so nice strings form
a submonoid of the strings� But we can also see that if s� t is started at its
beginning and terminates then it will execute by �rst executing s and then t�

Theorem ��� Nice catenation� If

� �s� �t� �V � �W �

� V �� s � p

� W �� t � p

then V � W �� s� t � p�

Theorem ��� Storing�

���ok�vmabs�a� �� store addr�m � p

Theorem ��� Jumping� If

� �s� �t� �V � �W �

� V �� s � p

� W �� t � p

then

V hja �� �ji W �� u � p

where u � zjump �� � �s�� s� jump �� � �t�� t

Notation

mtick ��� a� � a 	 m� � m 	 t� � t � �

Theorem ��� Looping� If

� �s� �t� �V � �W �

� V �� s � p

� W �� t � p

then V � �W � mtick � u � l hja �� �ji okM� �� u � l where u � s� zjump �� �
�t�� t� jump ��� � �t � �s�

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

Theorem ���� The expression theorem� If f is a function from either the
integers or the booleans to source level speci�cations� and E is an expression
of the right type� then

f�E �� �abs�a� � E 	 ok�� � f��abs�a�

��� Expression correctness

We will say that a string e is a correct compilation of an expression E just if

h�l � �p � l���abs�a� � E 	 ok�� �� e � li

�e

�� Code generator derivation

Throughout this section� we will assume as induction hypotheses that t is a
correct compilation of T � u is a correct compilation of U � and e is a correct
compilation of E�

The goal is to �nd a correct compilation of program S whatever its form�

���� The nil statement

We have S � nil

�ok� f�ok� �� okMg
�� okM
��� nil � p

���� The sequential composition statement

We have S � T �U �

��T � U� f� over � ���g
�� �T � �U fnice catenation ���� induction hypothesesg
��� t�u � p

So C��S�T � can be C�S�C�T �

���� The assignment statement

We have S � �vm �� E��

���ok��vmE � fthe expression theorem ����g
�� ���abs�a� � E 	 ok�� � �ok��vmabs�a� f� over � ���g
�� ��abs�a� � E 	 ok�� � ���ok��vmabs�a�
fstoring ���� nice catenation ���� induction hypothesesg
�� e� store addr�m

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

���	 The if statement

We have S � if E then T else U ��

��T hjEji U� fthe expression theorem ����g
�� ���abs�a� � E 	 ok�� � �T hjabs�aji U�� f� over � ���g
�� ��abs�a� � E 	 ok�� � ��T hjabs�aji U� f� over hjji �!�g
�� ��abs�a� � E 	 ok�� � ��T hjabs�aji �U�
fjumping ���� nice catenation ���� induction hypothesesg
�� e� zjump � � �t� t� jump � � �u�u � p

���� The while statement

We have S � while E do T od�
Now �	� says we want an s such that

�p � l��S �� s � l

From the laws about while loops� only one has S on the left�hand side of a ��� �
induction� But to use induction requires the S to be isolated�

fGalois connection ���g
� S �� �p � l���s � l�

Let U � �p � l���s � l� and apply ����

� �t�� � t� �� U� 	 �wh�U �� U�

The �rst conjunct easily reduces to true� The derivation continues with the
second conjunct�

fde�nition wh and Ug
� T � �t� ��� t� � �� � �p � l���s � l� hjEji ok� �� �p � l���s � l�
fGalois connection ���g
� �p � l��T � �t� ��� t� � �� � �p � l���s � l� hjEji ok� �� s � l

The remainder of the derivation is fairly straight forward and works towards
being able to apply the looping theorem ��� to �nally get

� s � e� zjump � � �t� t� jump � � � �t � �e

���� Summary of the compiler

Assuming the existence of a correct code generator CE for expressions� the
results of this section constitute a proof that the compiler

C�nil � nil

C��T �U� � C�T �C�U

C��vm �� E� � CE�E� store addr�m

C��if E then T else U �� � CE�E� zjump � � �C�T �C�T �
jump � � �C�U �C�U

C��while E do T od� � CE�E� zjump � � �C�T �C�T �
jump � � � �C�T � �CE�E

is correct�

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

�� Conclusion

In the preceding I have outlined an approach to the predicative semantics of
machine code and given a small example of its application to the speci�cation
and derivation of a simple compiler� Obviously� the compiler arrived at above
could be written informally with much less e�ort� But� the simple compiler of
the paper is only an example� The speci�cation of the compiler is generic� it is
valid for all source languages� machine languages� and representation relations�
provided the semantics of the source language is given predicatively� and the
machine language and representation relation meet the conditions mentioned
in the paper� Similarly� most of the theorems used in the derivation of the
compiler are generic and the techniques used in the derivation are reusable�

Along the way to compiler correctness we have developed a predicative inter�
pretation for machine languages� Although it is illustrated by a simple machine
language� it is suitable for machine languages with more complex instruction
sets and more complex state spaces� This predicative interpretation may also
be employed for other problems such as processor veri�cation and reasoning
about hand coded machine code�

Clearly there is work to be done on using the framework presented above
for more elaborate and realistic source and target languages� for dealing with
optimizing compilers� and for automating some of the theorem proving� These
and other topics are further addressed in �Norvell ���	
�

Acknowledgements

I would like to thank He Jifeng for helping me understand while loops� and Steve
Cook for providing a superior proof of the separation theorem� I especially
thank Ric Hehner� not only for many speci�c contributions to this paper� but
also for many years of guidance and support in many ways� I am grateful to
the Natural Sciences and Engineering Research Council for �nancial support�
the Computing Laboratory at Oxford for logistical support� and especially to
the Department of Computer Science at the University of Toronto for providing
both�

References

�Cook ���	
 Stephen A� Cook� ���	� Personal Communication�

�Hehner ����
 Eric C�R� Hehner� Predicative programming� Communications
of the ACM� �������	���!�� �����

�Hehner ���	
 Eric C�R� Hehner� A Practical Theory of Programming� Spring�
er�Verlag� ���	�

�Hoare ����
 C�A�R� Hoare� Re�nement algebra proves correctness of compiling
speci�cations� Technical Report PRG�TR������ Oxford University Comput�
ing Laboratory� Oxford University� �����

�Hoare ����
 C�A�R Hoare� Programs are predicates� In Meeting of the Fifth
Generation Project� ICOT� �����

�th Re�nement Workshop� David Till �Ed��� pp� �������� Springer�Verlag� �����

�Jones ����
 Neil D� Jones� editor� Semantics�Directed Compiler Generation�
Number �� in Lecture Notes in Computer Science� Springer�Verlag� �����

�Manasse and Nelson ����
 Mark Manasse and Greg Nelson� Correct compila�
tion of control structures� Technical Report Technical Memorandum ������
���������TM� AT$T Bell Laboratories� �����

�McCarthy and Painter ����
 J� McCarthy and J� Painter� Correctness of a
compiler for arithmetic expressions� In Proceedings of Symposia in Applied
Mathematics� Volume XIX� �����

�Milne and Strachey ����
 R� E� Milne and C� Strachey� editors� A Theory of
Programming Language Semantics� Chapman $ Hall� London� �����

�Morris ���	
 F� Lockwood Morris� Advice on structuring compilers and prov�
ing them correct� In Proceedings of the ACM Conferfence on Principles of
Programming Languages� ���	�

�Mosses ����
 Peter D� Mosses� A constructive approach to complier correct�
ness� In �Jones ����
� �����

�Norvell ���	
 Theodore S� Norvell� A Predicative Theory of Machine Lan�
guages and its Application to Compiler Correctness� PhD thesis� University
of Toronto� ���	�

�Polak ����
 Wolfgang Polak� Compiler Speci�cation and Veri�cation� Number
��� in Lecture Notes in Computer Science� Springer�Verlag� ����� Also a
Stanford Ph�D� thesis�

�Sampaio ���	
 Augusto Sampaio� An Algebraic Approach to Compiler Design�
PhD thesis� Oxford University� ���	�

�Tarski ��!!
 Alfred Tarski� A lattice�theoretical �xpoint theorem and its ap�
plications� Paci�c Journal of Mathematics� !���!�	��� ��!!�

�Thatcher et al� ����
 James W� Thatcher� Eric G� Wagner� and Jesse B�
Wright� More advice on structuring compilers and proving them correct�
In �Jones ����
� �����

