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Abstract

A predicative semantics is a mapping of programs to predicates� These pred�
icates characterize sets of acceptable observations� The presence of time in
the observations makes the obvious weakest �xed�point semantics of itera�
tive constructs unacceptable� This paper proposes an alternative� We will see
that this alternative semantics is monotone and implementable �feasible�� Fi�
nally a programming theorem for iterative constructs is proposed� proved�
and demonstrated� A novel aspect of this theorem is that it is not based on
invariants�
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� FORMALIZATION

��� Speci�cations and re�nement

De�ne xnat as the set of all natural numbers �nat� joined with an additional
object �� We will suppose the following properties of �� it is larger than
any natural number	 � 
 i � � � i � �� for all natural numbers i	 and
��� � ��
I will use a batch� model for speci�cations borrowed� in most respects� from

�Hehner ������ Let � be any type �a nonempty set�� I will call the members
of � states�� which is suggestive of imperative programming� but the actual
contents of � will only be relevant in the examples� Speci�cations are functions
of type

�� xnat� �� xnat� bool �
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For example� ��� � �� � � xnat� �� � �� � � � xnat � � � � � � �� � �� is a
speci�cation�
The variables �� �� � � and �� � � � xnat will be used in writing speci�cations

follows� for any expression E� I write hEi for the abstraction of E with respect
to these variables� For example� h� � � � � �� � �i is an abbreviation for the
speci�cation ��� � �� � � xnat� �� � �� � � � xnat � � � � � � �� � ��� The variables
are used as follows� � and �� represent the initial and �nal states while � � and
� � represent the initial and �nal times� Thus the speci�cation h� � � � � �� � �i
speci�es that the �nal time is no less than the initial time and the �nal state
is the same as the initial state�
All boolean operators ��� �� �� 	� 
� �� ��� � ��lift to the speci�cation

level	 for example� if P and Q are speci�cations� P  Q is the speci�cation

hP��������� �  Q��������� �i �

I use the symbols � and � as the boolean constants true and false�
Re�nement is de�ned as

�P v Q� � ���� �� ��� � � � P��������� � � Q��������� �� �

Equality of speci�cations is extensional

�P � Q� � �P v Q� � �Q v P � �

��� Discussion

This formalization applies equally to imperative programming and to func�
tional programming� In imperative programming � is a set of states and in
functional programming � is a set of values�
The use of predicates as speci�cations follows �Hehner ������ �Hoare ������

�Hehner ������ �Hoare ������ and �v� Karger and Hoare ������
The treatment of time is based on �Hehner ����� and �Hehner ������ It

is necessary to include the in�nity value in the time domain in order to deal
with in�nite loops� Because a statement may sequentially follow an in�nite
loop� xnat is used both for the initial and �nal states� Time is considered a
quantity orthogonal to state	 this simpli�es the writing of speci�cations� but
as we will see� it complicates the theory somewhat� Using the algebra of xnat
requires some care� as some laws of nat do not hold unconditionally�
The use of predicates is reminiscent of the Z method �Spivey ������ but

the notion of re�nement in Z is quite di�erent and much harder to work
with� More relevant are re�nement calculi based on predicate transformers
�Back and von Wright ����� and �Morgan ������ Binary predicates ordered
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by re�nement are order isomorphic to the universally conjunctive predicate
transformers �Holt ������

��� Bounds and classes of speci�cations

A speci�cation P is said to be progressive if

h� � � �i v P �

and to be implementable if

���� � � ����� � � � P��������� ��� �

The term feasible is also used in the literature �e�g� �Morgan ������ for this
property of speci�cations�
A speci�cation P is called a condition if it does not depend on its latter

two arguments� An expression B is called a condition� if hBi is a condition�
A function g of type � � xnat � xnat is called a bound of a speci�cation

R if

h� � � � 
 g����i v R �

A speci�cation R is said to be strongly bounded if it has a natural bound�

��g � �� xnat � nat � h� � � � 
 g����i v R� �

Such a speci�cation guarantees termination after a �nite amount of time�
For a given speci�cation R� we can consider the set of all bounds�

fg � �� xnat� xnat j h� � � � 
 g����i v Rg �

This set may be ordered pointwise� �g � h� � ���� � � g���� � h������ For an
implementable and progressive R� this set will have a minimum member mR

characterized by

mR���� � �max��� � � j R��������� � � � � � �� �

Henceforth the subscript on m will be omitted if it is the letter R� The key
property of m is that a computation� starting in state � at time � � could take
as long as m���� �

���� � � ����� � � � R��������� � � � � � m���� 
 ��� � ���
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Ifm does not depend on its second argument� we say thatR is time�insensitively

bounded�
Speci�cations that make no demands about the �nal state� when the initial

time is � are called reasonable� We want to allow reasonable speci�cations to
be progressive� De�ne

Z � h� �� � � �i

a speci�cation R is said to be reasonable i�

R � Z 	R �

��� Semantics

The semantics of programming constructs is given by de�ning the simple
constructs as speci�cations and compound constructs as functions from �one
or more� speci�cations to speci�cations� A program can then be de�ned as a
speci�cation built using only the programing constructs�
Some straight�line programming constructs are de�ned by�

skip � h�� � � � � � � �i

tick � h�� � � � � � � � 
 �i

P 	Q � h���� �� � P���������� �Q������ ����� �i

if B thenP elseQ � �hBi � P � 	 �
 hBi �Q� �

In the if�statement� it will be assumed that B is a condition� The tick construct
is not really a programming construct� but is useful in de�ning thewhile loop�
It should be noted that these de�nitions hold for P and Q being any spec�

i�cations� not only those formed from programming constructs�
For condition B and speci�cation P de�ne a function wB�P by

wB�P �Q � if B then�P 	 tick	Q� else skip ���

LetWB�P stand for whileB doP � Henceforth the subscripts on w andW will
be omitted where they are the letters B�P � As in �Norvell ����� and �Norvell
����� I de�ne the while loop by three axioms

Progression� h� � � �i vW

Post��xed�point� w�W vW
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Induction� �h� � � �i v Q� � �w�Q v Q� �W v Q� � for all Q�

This de�nition of the while�loop is called the weakest progressive post��xed�
point de�nition� The lattice of progressive speci�cations is complete and thus
we may apply the Knaster�Tarski �Tarski ����� theorem to tell us that W is
well de�ned� that it is a �xed�point�

w�W �W � ���

and that it is the weakest of the �xed�points�

�h� � � �i v Q� � �w�Q � Q� �W v Q� � for all Q�

As an alternative� but equivalent� de�nition� it is possible to replace the post�
�xed�point and the induction axioms with these last two formula�

��� Discussion

It should be noted that the only action among the statements presented so far
that is considered to take any time at all is the backward jump of the while
loop� The �time� calculated for programs under this model is not proportional
to the actual time that an implementation would take� However it does give
the correct order for time complexities if all primitive operations are O����
This is not the only alternative� it is possible to use a semantics that keeps
more careful track of time� Further discussion can be found in �Hehner ������
The importance of the progression axiom and the corresponding antecedent

in the post��xed�point axiom is that simply taking the weakest �xed�point of
the equation

W � if B then�P 	 tick	W � else skip

would not result in a construct that is closed under progressiveness� For ex�
ample� with the current de�nition we have

h� � ��i v while�do skip �

However� with the weakest �xed�point semantics� such a loop would not even
be progressive� The di�erence between these approaches is manifested for �po�
tentially� in�nite loops� and one may wonder if these are worth the trouble�
With the limited notion of observations used in this paper �initial and �nal
states only�� the point is arguable� However� for communicating programs�
which can be modeled using a slightly richer notion of observations� �poten�
tially� in�nite loops are of great importance�
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It might seem that it would be easier to simply work within the lattice
of progressive speci�cations or even the semilattice of progressive and imple�
mentable speci�cations� From a semantic point of view� this may be true� But
from the point of view of specifying� it is simplest if speci�cations are sim�
ply predicates with no restrictions� Also the progressive speci�cations are not
closed under negation� so this would restrict the ways in which speci�cations
are composed�

� ESSENTIAL THEOREMS

Compound programming constructs are generally monotonic with respect to
re�nement and preserve implementability and progressiveness� Both these
properties hold for the while loop as de�ned above�
We start by showing monotonicity�

Theorem � For any condition B� and speci�cations P and Q� if P v Q�

then

whileB doP v whileB doQ �

Monotonicity is not hard to prove and illustrates all three axioms at work�

WB�P vWB�Q

� � Induction axiom with Q instantiated by WB�Q� �

�h� � � �i vWB�Q� � �wB�P �WB�Q vWB�Q�

� � Progression axiom �� � � � vWB�Q� and prop� calc� �

wB�P �WB�Q vWB�Q

� � Post��xpoint axiom �wB�Q�WB�Q vWB�Q� and

transitivity of v ��

wB�P �WB�Q v wB�Q�WB�Q

� � De�nition of w ���� �

if B then�P 	 tick	WB�Q� v if B then�Q	 tick	WB�Q�

� � Monotonicity of if and 	 � �

P v Q

Next we show that progressiveness and implementability are jointly pre�
served�

Theorem � For any condition B� and speci�cation P � if
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P is progressive and

P is implementable�

then whileB doP is progressive and implementable�

The proof is given in appendix �� This proof also shows that progressiveness
is preserved on its own�

� A PROGRAMMING THEOREM

Among the most useful of the theorems in a re�nement calculus are those
of the form �if ��� then R v c�P��P�� � � � �Pn��� where c is a program con�
structor� For example� in the theory used in this paper R v if B then�hBi 
R� else�
 hBi  R� is a useful theorem�
In order to derive programs involving while�loops� we would like to have

theorems that conclude with R v whileB doP � In most re�nement calculi�
such theorems are usually based on invariants� In �Hehner ����� the idea of
�recursive re�nement� instead of invariants is suggested� In this section we
propose a theorem based on recursive re�nement�
A speci�cation R is said to be recursively re�ned if

R v if B then�P 	 tick	R� else skip � ���

It is often true that when ��� is true� it is also true that

R v whileB doP � ���

So the question arises of under what conditions ��� implies ���� The next
theorem presents one possible set of conditions�

Theorem � For any condition B� and speci�cations P and R� if

P is progressive�

R is implementable� strongly bounded� time insensitively bounded� and rea�

sonable� and

R is recursively re�ned�

R v if B then�P 	 tick	R� else skip ���

then R v whileB doP �

The proof of this is by induction and is given in appendix ��
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��� Discussion

It is informative to look at why additional conditions are required beyond ���
are required�
Here is a simple counter example showing that ��� does not imply R v

whileB doP � Take P to be skip and B to be �� We have

� v if � then�skip	 tick 	�� else skip �

But it is certainly not the case that

� v while�do skip

as this would mean that the while loop is unimplementable� Yet we know from
the Theorem � and the fact that skip is progressive and implementable that
the while loop is also implementable�
In �Hehner ����� it is suggested that recursive re�nement is only a valid

programming method for implementable speci�cations� What if we restrict
R to be an implementable speci�cation� Again we are disappointed� Consider
the following monster�� It is true that

h�� � �i v if � then�skip	 tick 	 h�� � �i� else skip

and that

h�� � �i v if � then�skip	 tick 	 h�� � �i� else skip �

Yet� if it were true both that

h�� � �i v while�do skip

and

h�� � �i v while�do skip �

we would have to conclude that

� v h�� � � � �� � �i v while�do skip �

Again this contradicts the implementability of while loops�
The problem illustrated in this example occurs basically because the loop

is in�nite� By adding the requirement of strong bounding� in�nite loops are
eliminated� The requirements that P be progressive and that the minimum
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bound is not sensitive to the starting time ensure that the induction goes
through�
The requirement that R be reasonable is the most troubling� as it requires

one to write speci�cations in a way that one otherwise would not� This re�
quirement is necessary because the induction does not work when the initial
time is �� One solution to this problem is to use the ordinal numbers as the
time domain rather than xnat� The problem with this solution� is that the
proof of Theorem � no longer goes through� Other solutions might involve
changing the de�nitions of re�nement or of the programming constructs� or
removing the orthogonality of time and state �i�e� treat speci�cations as bi�
nary relations on �� � nat� � f�g�� Such changes are rather undesirable as
the simplicity of these de�nitions is an important attribute of the predicative
programming approach�
A somewhat similar theorem appears in �Sekerinski ������ However the

de�nition of the programming connectives �e�g� sequential composition� is
di�erent and the theorem can only be used to show that a speci�cation is a
�xed�point� From a programming point of view� this is less satisfactory as one
is not so much interested in whether a while loop equals a given speci�cation�
but rather whether it implements the speci�cation at hand�

� A PROGRAMMING EXAMPLE

In imperative programming� � consists of states� which may be considered
functions from program variable names to values� This function can be ex�
tended to expressions� For any program variable name x� and expression E
the assignment statement can be de�ned as

x �� E � h���x � ��E � ��y � dom �� j x �� y � ���y � ��y� � � � � �i

where dom �� is the set of variable names�
In this section� for any program variable name such as x� I will use the

convention of writing x in speci�cations rather than ��x and of writing x�

rather than ���x� With this convention the assignment is simply

x �� E � hx� � E � y� � y � � � � � � � � �i �

where the � � � depends on what variables are in the domain of the states� We
have the following useful substitution law

x �� E	 hP i � hP x
Ei � ���
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provided P is written with the convention� There is an analogous law for the
time variable

tick 	 hP i �
�
P �
���

�
� ���

I will solve a trivial programming example in two ways� illustrating the
relationship of recursive re�nement to the invariant method� The problem is
that of �nding the product of the elements in an array A of size N� The
speci�cation is

S � hs� � ��i � f�� ��Ng � A�i�� � � � � 
Ni 	 Z

I will write fi� ��kg for the set of all integers j� such that i � j � k and
fi� ��� kg for the set of all integers j� such that i � j � k� The �	Z� part of
the speci�cation is required to satisfy the condition of reasonableness�� The
predicate Z was de�ned in Section ����

��� A solution that does not use an invariant

We can re�ne S using the substitution law �supposing x is of type f�� ��� Ng��

S v s� x �� �� �	R� �

where

R� � hs� � s� ��i � fx� ��Ng �A�i� � � � � � 
N � xi 	 Z �

This is re�ned by cases

R� v if x � N then�hx � Ni  R�� else skip �

Now we can re�ne the remaining speci�cation�

hx � Ni  R�

v � Splitting the product� ��
s� � s�A�x� ��i � fx
 �� ��Ng �A�i�

� � � � � 
 � 
N � �x
 ��

�
	 Z

� � Substitution ��� and ���� �

s� x �� s�A�x� x
 �	 tick 	R� �
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Putting these results together �by the monotonicity of if � we get

R� v if x � N then�s� x �� s�A�x� x
 �	 tick 	R�� else skip �

Since all the conditions of Theorem � are met� we may conclude

R� v while x � N do s� x �� s�A�x� x
 � �

��� A solution using an invariant

It should be noted that nowhere in the above development� nor even in the
thinking behind it� did the formula

s � ��i � f�� ��xg �A�i�

appear� This is the invariant that would be used if the invariant method were
used� Recursive re�nement does not exclude the use of invariants and� in the
development of many loops� it is the simplest method�
Using substitution� and some simpli�cation� we could also re�ne S by

S v s� x �� �� �	R�

where R� is

hs � ��i � f�� ��xg � A�i� s� � ��i � f�� ��Ng � A�i�� � � � � 
N � xi 	 Z�

As with R� we can derive that

R� v if x � N then�s� x �� s�A�x� x
 �	 tick 	R�� else skip �

although the reasoning is a little more involved� Again the Theorem � can be
applied�
We can recognize that the R� has the form of a precondition s � ��i �

f�� ��xg �A�i� and a postrelation s� � ��i � f�� ��Ng �A�i��� � � � 
N�x� and
that the precondition is a loop invariant� but there is no real need to think in
these terms�

��� Views and re�nement by parts

It may seem unpleasant to carry the speci�cation of the time bound around
while deriving a recursive re�nement� However� it is not necessary to consider
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all parts of a speci�cation while deriving a re�nement for it� If f is a monotone
function of speci�cations� then

�T � U v f��V �W ��� �T v f�V � � �U v f�W � �

In particular it may be useful to derive a recursive re�nement for only the
part of the speci�cation that does not deal with time and then check that the
same recursive re�nement applies to the remainder of the speci�cation�
For example R� can be split into two views�� R� � T � U

T � hs� � s� ��i � fx� ��Ng � A�ii 	 Z

U � h� � � � 
N � xi 	 Z

We can then derive that

T v if x � N then�s� x �� A�x� x
 �	 tick 	T � else skip

and check that

U v if x � N then�s� x �� A�x� x
 �	 tick 	U� else skip �

This gives us that

R� v if x � N then�s� x �� A�x� x
 �	 tick 	R�� else skip �

� CALCULATING THE LOOPS�

Weakest prespeci�cation �Hoare and He ����� is de�ned as

S�U � h���� �� � U����� �������  S���������� i � ���

The key property of the weakest prespeci�cation is this Galois connection�

�S�U v T � � �S v T 	U� � ���

Suppose one has an R that is implementable� strongly bounded� time in�
sensitively bounded� and reasonable� The remaining condition on R� that of
recursive re�nement� is equivalent to the conjunction

�R v h
Bi � skip� ����

� ��hBi  R���tick 	R� v P � ����
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So one can �nd a suitable loop implementation for R by �rst �nding a B
such that ���� �of course� the stronger this B is� the better� and then using
as a loop body P � h� � � �i � �hBi  R���tick	R�� which is the weakest�
progressive speci�cation satisfying ����� Any re�nement method can then be
attempted to re�ne P by a program�
The �rst step� that of searching for a suitable B� can also be made more

calculational� One can start with 
R�������� � which is the strongest solution
of ����� and then weaken until a condition is found that is easily implemented�

� CONCLUSION AND FUTURE WORK�

I have presented a semantics for iteration within a particular version of the
re�nement calculus� This semantics has been shown to enjoy the properties
one would expect and also to give interesting results for in�nite loops that
suggest applications for communicating processes� From the semantics� I have
proved a theorem that allows it to be used in the derivation of programs�
The proofs are done in a calculational and point�free style�
Although the notation used is suggestive of imperative programming� the

results are equally applicable to functional programming � program variables
are only introduced in the examples�
As mentioned above� one of the prime motivations for the weakest progres�

sive post��xed�point de�nition of while loops is to accommodate communi�
cating processes� In this case observations would consist not only of an initial
and �nal state� but also a history of communications� Thus generalizing these
results to this more general setting is important�
Once processes may interact� potentially in�nite loops become of greater

interest and the restriction to strong bounding is too severe� The search for
such programming theorems will be the subject of future research�
The work so far has concentrated on while loops� but the results should be

extendible to any set of mutually recursive subroutines�
The relationship to �v� Karger and Hoare ����� is intriguing� In that paper

a very abstract calculus of speci�cations is presented� The principal di�erence
between their calculus and relational calculus is the replacement of the con�
verse operator by a relative converse operator� This prevents the formation
of speci�cations that �undo�� This is the same motivation for restricting our
attention to the lattice of progressive speci�cations and forming �xed�points
within that lattice�

� ACKNOWLEDGMENTS

Thanks are due to Eric Hehner for many discussions and comments� to the
referees for helpful comments� to NSERC for funding� and to the Faculty of



�	 Predicative Semantics of Loops

Engineering� Memorial University of Newfoundland� for equipment� location�
and funding�

APPENDIX � PROOF OF THE IMPLEMENTABILITY

THEOREM �

�This appendix represents joint work with Eric Hehner��
Given an implementable and progressive P we must show that

W � whileB doP

too is implementable and progressive�
Throughout this appendix speci�cation P will be assumed to be imple�

mentable and progressive� Rather than work with P � I will work with P� �
P 	 tick� P� is also implementable and progressive�
By the progression axiom� we know that W � whileB doP is progressive�

The question remains whether it is implementable�
Suppose we can �nd an implementable Q that is also progressive and such

that

if B then�P�	Q� else skip v Q �

The induction axiom tells us that W v Q� Since any speci�cation that is
re�ned by an implementable speci�cation must itself be implementable� this
would imply that W is implementable� Thus the goal becomes� �nd a Q that
is implementable� progressive� and a post��xed�point�
There must be at least one progressive �xed�point� We know this because

W is one example� In the following let S be any progressive �xed�point�

� � � � v S ����

S � if B then�P�	S� else skip � ����

S may or may not be implementable� We de�ne a condition D to identify the
initial states for which S accepts no �nal state�

D � 
����� � � � S��������� �� � ����

Now de�ne Q as

Q � S 	 �hD � � � ��i� � ����

It is clear that Q is implementable and progressive� We need only prove that
it is a post��xed�point�
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To do this I will use two lemmata to be proved later�

hBi v hDi ����

hDi � P�	X � hDi � P�	 �hDi �X� � ����

for any X � Both follow from the fact that S is a �xed�point and will be proved
later�
We prove that Q is a post��xed�point by considering separately D true and

D false� First for D true�

hDi � �if B then�P�	Q� else skip�

� � ���� hBi v hDi � �

hDi � �P�	Q�

� � Defn of Q� �

hDi � �P�	 �S 	 hD � � � ��i��

� � Distribute 	 over 	 � �

hDi � ��P�	S�	 �P�	 hD � � � ��i��

� � Lemma ���� hBi v hDi �

hDi � ��if B then�P�	S� else skip� 	 �P�	 hD � � � ��i��

� � S is a �xed�point� �

hDi � �S 	 �P�	 hD � � � ��i��

� � Lemma ����� �

hDi � �S 	 �P�	 h� � ��i��

v � P� is implementable� �

hDi � �S 	 h� � ��i�

� � Propositional calculus� �

hDi � �S 	 hD � � � ��i�

� � Defn of Q� �

hDi �Q

Now for D false�


 hDi � �if B then�P�	Q� elseskip�

� � Defn of Q� �


 hDi � �if B then�P�	 �S 	 hD � � � ��i�� else skip�

v � Monotonicity� �


 hDi � �if B then�P�	S� else skip�

� � S is a �xed�point� �
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 hDi � S

� � Propositional calculus ��


 hDi � �S 	 hD � � � ��i�

� � Defn of Q� �


 hDi �Q

From

hDi � �if B then�P�	Q� else skip v hDi �Q

and


 hDi � �if B then�P�	Q� else skip v 
 hDi �Q

we can conclude

if B then�P�	Q� else skip v Q �

It remains to prove the two lemmata� We start with ����

hBi v hDi

� � Contrapositive� �


 hDi v 
 hBi

� � De�nition of D� �

h���� � � � S��������� �i v 
 hBi

� � S is a �xed�point� �

h���� � � � �if B then�P�	S� elseskip���������� �i v 
 hBi

� � De�nition of if � �

h���� � � � skip��������� �i v 
 hBi

� � skip is implementable� �

�

It now remains only to prove ����� This follows easily from

hD�i v P� � hDi

�D� is D with � and � replaced by �� and � �� which is proved by contradiction�
Start with the negation�

��� �� ��� � � �D � P���������� � � 
D�
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� � Rename variables� �

��� �� ���� � �� �D � P����������� �� � 
D
��

� � Defn D� �

��� �� ���� � �� �D � P����������� �� � ����� � � � S������ ������� ��

� � Predicate calculus� � over � � �

��� �� ��� � �� ���� � �� �D � P����������� �� � S������ ������� �

� � Predicate calculus� � over � � �

��� �� ��� � � �D � ���
��

� �
��

� P�������
��

�� �� � S������ ������� ��

� � De�nition of 	 � �

��� �� ��� � � �D � �P�	S���������� �

� � Lemma ����� �

��� �� ��� � � �D � �if B then�P�	S� else skip���������� �

� � S is a �xed�point� �

��� �� ��� � � �D � S��������� �

� � Defn D� �

��� �� ��� � � � 
����� � � � S��������� �� � S��������� �

� � Predicate calculus� � over � � �

��� � � 
����� � � � S��������� �� � ����� � � � S��������� ��

� � Contradiction� �

�

APPENDIX � PROOF OF THE WHILE	LOOP THEOREM �

We will assume

P is progressive	
R is implementable� strongly bounded� time insensitively bounded� and rea�
sonable	 and

R is recursively re�ned�

R v if B then�P 	 tick	R� else skip �

It must be shown that R v whileB doP �
Throughout this appendix condition B and speci�cation P will be assumed

to have the properties stated in Theorem ��
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APPENDIX ��� h� 
�i or h� � nati

Ultimately I want to prove R vW � I will prove this by cases on h� ��i	 i�e�
by proving R v h� ��i �W and R v h� � nati �W � I start with the �rst

h� ��i �W

w � Progression axiom �

h� ��i � h� � � �i

� � xnat arithmetic�

h� �� � � �i

w � De�nition of Z and generalization�

Z 	 R

� � R is reasonable �

R

APPENDIX ��� B or �B

It remains to prove R v h� � nati�W � I will prove this by cases on hBi� The
easy case is when B is initially false� We do not need to use the fact that � is
�nite�


 hBi �W ����

� � W is a �xpoint of w ���� �


 hBi � w�W

� � De�nition of w ���� �


 hBi � if B then�P 	 tick	W � else skip

� � De�nition of if� �


 hBi � skip

� � De�nition of if� �


 hBi � if B then�P 	 tick	R� else skip

� � De�nition of w ���� �


 hBi � w�R

w � R is recusively re�ned ��� and monotonicity of � � �


 hBi � R

w � Specialization� �

R �
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On the other hand what about the case when B is initially true�

hBi � h� � nati �W ����

� � W is a �xpoint of w ���� �

hBi � h� � nati � w�W

� � De�nition of w ���� �

hBi � h� � nati � if B then�P 	 tick	W � else skip

� � De�nition of if� �

hBi � h� � nati � �P 	 tick	W �

� � B � h� � nati is a condition� �

�hBi � h� � nati � P �	 tick	W �

At this point we are a little stuck� It is time to bring out the heavy artillery���

APPENDIX ��� The repetend decreases the bound more

than it spends time�

Here and below� I will write M for the expression m���� � and M � for m����� ��
As R is strongly bounded� M is a natural number �i�e� not ��	 as R is time�
insensitively bounded� it does not depend on � �
We now use our knowledge of R to conclude that P decreases the bound

more than it spends time�

� Recursive re�nement ��� �

R v w�R

� � De�nition of w ���� �

R v if B then�P 	 tick	R� else skip

 � De�nition of if� �

R v hBi � �P 	 tick	R�

� � B is a condition� �

R v �hBi � P �	 tick	R

 � As M is a bound� h� � � � 
Mi v R	 transitivity of v � �

h� � � � 
Mi v �hBi � P �	 tick	R

 � R could take as much time as M � � ����

h� � 
M � � � 
Mi v �hBi � P �	 tick

� � M does not depend on � �

h� � 
M � 
 � � � 
Mi v hBi � P � ����
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The hint at step ���� is an appeal to computational intuition� but can be
 eshed out� To do so� we use the weakest prespeci�cation ����
It will be helpful to restate ��� using di�erent variable names�

����� � � � �� !�� !� � R����� �� !�� !� � !� � � � 
M ��� � ����

We can now calculate�

h� � � � 
Mi�R ����

� � De�nition of weakest prespeci�cation� �

h���� �� �R����� �������  �� � � 
Mi

w � Specialize to any !� and !� that ���� says exist�

�These variables are dependant on �� and � ��� �

hR����� �� !�� !�  !� � � 
Mi

� � From ���� we know R����� �� !�� !� � �

h !� � � 
Mi

� � From ���� we know !� � � � 
M �� �

h� � 
M � � � 
Mi �

Now we can  esh out step �����

h� � � � 
Mi v �hBi � P �	 tick	R

� � Galois connection ���� �

h� � � � 
Mi�R v �hBi � P �	 tick

 � Calculation ���� and transitivity� �

h� � 
M � � � 
Mi v �hBi � P �	 tick �

This completes the proof of ����� As a corollary we have�

� P decreases the bound more than it consumes time ����� �

h� � 
M � 
 � � � 
Mi v hBi � P

� � P is progressive� �

h� � 
M � 
 � � � 
M � � � � �i v hBi � P

 � Monotonicity of � �

h� � 
M � 
 � � � 
M � � � � � � � � nati v hBi � h� � nati � P

� � Both M and M � are naturals �

h� � 
M � 
 � � � 
M � � � � � � �� � � � nati v hBi � h� � nati � P

 � Transitivity of � � �
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h� � 
M � 
 � � � � 
M � � � � � � �� � � � nati v hBi � h� � nati � P

 � nat arithmetic� �

hM � 
 � �M � � � � � � �� � � � nati v hBi � h� � nati � P

 � Weakening the LHS of the re�nement� �

hM � 
 � �Mi v hBi � h� � nati � P

 � M is natural� �

hM � � Mi v hBi � h� � nati � P � ����

APPENDIX ��� The induction

With these results in hand� we will prove that R v W � As we already have
R v 
 hBi � W � and R v hBi � h� ��i � W it remains to prove R v
hBi�h� � nati�W � The proof is by complete induction onM � which� because
of strong bounding� is a natural expression� Speci�cally we will prove� for any
natural i�

R v hM � ii � h� � nati � hBi �W

follows from the induction hypothesis R v hM � ii � h� � nati � hBi �W � In
light of calculation ����� we can see that the induction hypothesis implies

R v hM � ii � h� � nati �W � ����

Calculate

hM � ii � h� � nati � hBi �W

� � Calculation ����� �

hM � ii � �hBi � h� � nati � P �	 tick	W

w � ����� �

�hBi � P �	 �hM � ii � h� � nati � tick�	W

� � Time insensitivity� �

�hBi � P �	 tick	 �hM � ii � h� � nati �W �

w � Induction hypothesis ����� �

�hBi � P �	 tick	R

� � B is a condition� �

hBi � �P 	 tick	R�

w � De�nition of if� �

if B then�P 	 tick	R� else skip
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