Geometric Modeling Systems

- Wireframe Modeling
 - use lines/curves and points for 2D or 3D
 - largely replaced by surface and solid models

- Surface Modeling
 - wireframe information plus surface definitions
 - supports shading, toolpath generation, etc.
 - verification of surface normals, curvature, etc.

- Solid Modeling Systems
 - closed volumes. Includes surface information.
 - Any point: inside, outside or on surface.
 - Solid information can be derived (e.g. mass, centre of gravity, etc.)
 - can be used for further analysis or processing (e.g. finite element meshing, NC machining)
 - much more complicated data structure including geometry and topology.
 - Modeling functions designed to relieve operator of the complexity of the data required.

- Modeling functions
 - almost all solid modeling systems provide the same set of modeling functions for object creation.
 - Primitive Creation
 - Boolean Functions
 - Sweeping/Swinging
 - Lofting/Skinning
 - Rounding/Blending
 - Lifting
 - Boundary Modeling
 - Feature based Modeling

- Primitive Creation
 - retrieve previously defined primatives
 - block, cylinder, cone, sphere, etc.
 - usually parametric in nature with dimensional input required upon retrieval.

- Boolean Operations
 - union, intersection and difference
 - can include cutting with planes, etc.
 - avoid invalid solids (e.g. 2 blocks just touching)

- Sweeping/Swinging
 - translating or revolving a planar closed loop results in a solid (i.e. the swept volume).
 - If the shape is not closed, a surface is generated instead of a solid. Some modelers allow this and some do not.

- Lofting/Skinning
 - create a “skin” over prespecified cross-sectional planar sections.
 - The “ends” must be closed to make a solid.

- Rounding/Blending
 - modifying existing solids to remove a sharp edge or vertex and replace with smooth curved surface.
 - Filleting is a special case where the rounding occurs with the addition of material.

- Lifting
 - pulling a portion or an entire face of a solid in a certain direction.
 - Avoid creation of improper solids.
• Boundary Modeling
 – similar to surface modeling.
 – Modification of vertices, edges and faces directly.
 – Must create a fully bounded volume
 – surfaces must then be “stitched” together.
 – Allows for solids with specific complex surface definitions.
 – Perfecting edge connections can be challenging.

• Feature Based Modeling
 – creation of features on objects which are similar to manufacturing tasks.
 – E.g. chamfer, drill a hole, cut a slot, etc.
 – provides potential for automated process planning (e.g. CAPP).
 – Captures knowledge of designer.
 – Integrates design and manufacturing
 – requires designers to think differently
 – doesn’t suit certain geometries and tasks.
 – May limit manufacturing options.

• Parametric Modeling
 – a refinement on all of the other approaches.
 – Allows dimensional constraints to maintained as variables which permits creation of part “families” based on underlying design.
 – Constraints must capture the design “intent” so that resized instances are correctly configured.
 – Can provide significant time savings through re-use of existing models.
 – Requires more training to ensure a proper constraint set.

• Representation of Curves
 – coordinate systems (WCS).
 – Analytic curves
 – e.g. lines, arcs, circles, parabolas, ellipses, etc.
 – Synthetic curves
 – e.g. splines
 – Parametric representation avoids issues of infinite slope, dependence on coordinate system and display as points or line segments
 \[P(u) = [x(u), y(u), z(u)]^T, \ u_{\text{min}} < u < u_{\text{max}} \]

• Synthetic curves have progressed through stages of development
 – general (Hermite) cubic spline (interpolation)
 – Bezier Curves (approximation)
 • shape controlled by defining points (not derivatives)
 • order/degree is variable to allow higher order continuity.
 • Generally smoother because of higher order derivatives.
 – B-Spline Curves
 • generalization of Bezier Curves.

• Parametric Curves (continued)
 • degree is separated from number of control points
 • Basis (blending) functions of desired degree.
 • Provide further control over curve, including tangency at start and end points.
 • Can use multiple coincident “knots” or control points to affect characteristics of curve.

• NURBS
 • non-uniform rational B-splines
 • a unified representation which is widely used
 • still an approximation and not always the best choice for simple (analytical) shapes.
• Representation of Surfaces
 – parallels curve representation
 – Analytic surfaces (planes, ruled, revolved, etc.) are represented parametrically.
 – Synthetic surfaces have developed in step with curve representation.
 • Hermite bi-cubic
 • Bezier
 • Coons patches
 • B-Spline
 • NURBS

• Representation of Solids
 – many different representations have been tried or proposed.
 • Primitive Instancing
 • Spatial Occupancy Enumeration
 • Cell Decomposition
 • Sweeping
 • Constructive Solid Geometry
 • Boundary Representation (B-Rep)
 – the last two listed have gained wide acceptance in commercial software.

• Constructive Solid Geometry (CSG)
 – uses primitive shapes and boolean operators
 – represented as a tree structure where branches end with primitives, dimensions, and coordinate transform.
 – Works well for user input and rendering
 – doesn’t explicitly define surfaces.

• Boundary Representation (B-rep)
 – objects represented by bounding faces
 – faces are subdivided into edges and vertices
 – it is possible to build a solid from B-rep, but it is laborious for the operator.
 – Excellent surface representation

• Combination CSG and B-rep
 – this is typical of current software which store and manipulate based on CSG, but use boundary evaluation to generate B-rep data.
 – Storage vs calculation trade-offs are made.

• CAD Data Translation
 – geometry, topology, auxiliary information
 – DXF is a commonly used standard
 • developed by Autodesk for AutoCAD
 • ASCII data file with headers and data points
 • not particularly well constructed or efficient.
 – Initial Graphics Exchange Standard (IGES)
 • international effort first available in 1980
 • adopted by ANSI and ISO
 • developed for 2D, 3D and surface model data
 • reasonably standard, although “flavours” exist.

• Standard for Exchange of Product Data
 – STEP is another international initiative
 – goal is to define a file format including all information necessary to describe a product from design to production
 – it is huge, somewhat unmanageable and largely unproven, but probably the future of data exchange.