Introduction

Assignments 10%
Labs 5%
Mid term test 25%
Final Examination 60%

http://www.engr.mun.ca/~adluri/courses/steel/outline.htm

Contact: 12:00-2:00 p.m. Monday (EN 3044)
Brute Strength To Amazing Grace

- In structural steelwork, grace, art and function can come together in almost limitless ways; it offers new solutions and opportunities, allowing us to stretch our imagination and actually create some of the most challenging structures.
- Structural steel's low cost, strength, durability, design flexibility, adaptability and recyclability make it the material of choice in North American building construction.
- Steel provides not only strength to structures, but also beauty and drama. It can be combined with other materials to blend the individual advantages to produce an even more inspiring structure.
- Advanced steel fabrication technology has unfolded great opportunities to design spectacular structures with steel.
Materials for ENG 7704

Structural Steel Design

- **Steel Design Handbook** – CISC
- **Limit States Design for Steel** – CISC Textbook

It's important you have access to the handbook because:

- You will have to use the book in the exams
- The book has the steel code (CSA-S16), properties of steel sections, several useful tables and examples

- Hand written notes in the handbook
 - Simple notes to aid the quick understanding are O.K. But no detailed calculations
Materials for ENG 7704
Structural Steel Design

- Important:
 - Ask questions!
 - If you don’t, I will have no choice but to assume that you understood (either that, or that you don’t care)!

“I appreciate you taking me under your wing, Dr. Adluri I hope to learn a lot.”
Additional resources

- Companion Website — This website from CISC provides other online resources. Visit http://www.cisc-icca.ca/
- Also visit AISC website and a number of other sites for steel structures to get information on famous structures, history, economics and technical details.
Course Topics

- **Introduction**
- **Design of Members and Connections**
 - Tension Members –yielding, rupture, shear lag, design
 - Bolted Joints –failure modes, limit strength, design for different configurations, shear and moment, eccentric connections, etc.
 - Welded Joints -types, failure modes, direct load, eccentric connections, etc.
 - Compression Members – Effective Length, Torsional-flexural buckling, built-up members, local buckling
 - Compression member design
 - Flexural Members – Beams, failure modes, classification, lateral-torsional buckling, bracing
 - Beam design for shear and moment
 - Beam-Columns -different checks for design
 - Plate Girder Design
 - Composite Construction –composite beams, failure modes, design

Serviceability: Introductions to Deflections, etc.
Labs

- Computer Lab
 - S-Frame, finite element, design, design check

- Structures Lab - only if resources permit :-(

Steel Design - Dr. Seshu Adluri
Introduction

Structural design may be defined as a mixture of art and science combining the intuitive feeling for the behaviour of a structure with rational principles of mechanics (statics, solid mechanics, dynamics, etc.) and structural analysis to produce a safe and economical structure to serve its intended purposes.

Steel is one of the most important building materials in the modern era. It is used solely or in combination with other materials such as concrete, timber, composites, etc., for a variety of purposes.
Advantages of Steel

- Economy
- Durability
- Design flexibility
- Simplicity
- All weather construction
- Easy repair
- Recyclable -100% any number of times
Benefits of Structural Steel

Some benefits associated with use of structural steel for owners are:

- Steel allows for reduced frame construction time and the ability to construct in all seasons
- Steel makes large spans and bay sizes possible, providing more flexibility for owners
- Steel is easier to modify and reinforce if architectural changes are made to a facility over its life
- Steel is lightweight and can reduce foundation costs
- Steel is durable, long-lasting and recyclable

(AISC 1999)
Procurement and management of structural steel is similar to other materials, but there are some unique aspects to steel construction:

- Steel is fabricated off-site (above left)
- On-site erection is a rapid process (above right)
- This gives use of structural steel some scheduling advantages
- Coordination of all parties is essential for achieving potential advantages
Just couldn’t resist!

Moon Light, Maritimes and Steel tower!
Wow!

- Steel is not just for structures

Chicago's Millennium Park has the modern art sculpture officially titled Cloud Gate, although locals quickly dubbed it the Bean. Designed by Canadian Frank Gehry. See also Chicago's Millennium Park pavilion with the curved steel elements.
History

- **Wootz** is a [steel](http://www.dedroidify.com/pillar.htm) developed in [India](http://www.dedroidify.com/pillar.htm) around 300 BC. The word *wootz* is a mistranscription of *ukku*, the word for steel in [telugu](http://www.dedroidify.com/pillar.htm).

- The pillar is fabricated in 310 A.D. in India. It has all along been outside as an astronomical observatory aid. It never rusted.

- 7.21 m (incl. buried), 41 cm diam., 6 tons

- Made by forge welding!
History

- **Damascus steel** is a hot-forged steel used in Middle Eastern sword making from about 1100 to 1700 AD.
- Damascus swords were of legendary sharpness and strength, and were apocryphally claimed to be able to cut through lesser quality European swords and even rock.
- The foundation for Damascus Steel is Wootz Steel, which originated in India and later spread to Persia.

Pattern welded "Damascened steel" pocket knife
History

- Japanese sword making from special steel forging is legendary.
- It is still practiced with very labour intensive process.

- China also has had a very ancient steel industry for sword making, guns and other weaponry.

Engraving of the Edo era depicting forge scenes
History

- **Ancient Use:**
 - Beginning 5th Cent. B.C., Weaponry, Ornamental and Bridge construction in India (small suspension bridges), Middle East and China

- **Early Use:**
 - 1777-79 First Cast iron bridge in England
 - 1780-1820 Several bridges all over Europe, preliminary rolled shapes manufactured
 - 1820 - Rails manufactured
 - 1840 - Advent of wrought iron

First modern suspension bridge - James Finley's - Jacob's Creek, Pennsylvania, 1801
History …

- Bessemer Process invented in 1855. Bessemer converter introduced in 1870. STEEL INTRODUCED
- 1890 Steel replaces all other forms.

- Early Structures:
 - 1870s Brooklyn Bridge
 - 1880s Eiffel Tower (330 m), steel bridges in Pittsburgh, several steel buildings in Chicago (rebuilt after the great fire)
 - 1890s Several steel buildings in NY and Europe
- 1907 Quebec Bridge followed by several bridges in North America
History...

- Modern Structures:
 - 1930s Golden Gate bridge, Empire State Building, etc.
 - 1960s Sears Tower
 - Extensive use of steel for medium to high rise buildings and long span bridges.
 - Equally extensive use of steel in industrial structures, airports, etc.
Now….

- Major construction in Asia
 - Steel-concrete composites, competing business & national interests
Now....
Future...

- There is major drop in North America steel building activity.
 - Asia is booming, Africa and South America might catch-up.
 - Millennium Tower in Japan and other futuristic projects are possible (the tower was meant to be about 840 m high, stand alone in Tokyo Bay, isolated, a city of its own population up to 50 000), to be reached by causeway and boats. Never made it since the late 1980s).

Bionic Tower, 1228m
Shanghai -proposed
Future...

A comparison of the Burj Khalifa and the proposed Nakheel Tower
Steel Design

- Structures or structural components primarily made of steel members attached to each other appropriately.
- Steel is excellent in both tension and compression.
- Since steel is primarily made of thin plate like elements, they are susceptible to buckling (local and overall).
- Connections in steel are considerably different from those in concrete. In steel, the members are ‘discrete’ or rolled (fabricated) separately and are attached to each other using appropriate connections.

Limit States Design \[\phi R \geq \alpha_i S_i \]

- Ultimate Limit States - usually means that structural safety has been compromised in a certain way - ultimate load capacity, stability (e.g., local or over all buckling, or overturning), sliding, fracture (due to fatigue), etc.
- Serviceability Limit States - usually means that the functionality of the structure is effected in some way, i.e., it is rendered unsatisfactory in terms of operating conditions - Excessive deflection (could be vertical, horizontal, or skew), vibration, permanent deformation, etc.
- We deal mainly with ultimate strength limit states in this course.
- Clause 7 (CSA-S16), Table 13
- Statistically, \(\phi \) = resistance factor, \(\alpha \) = load factor
- \(D, L, S, W, T = \) Effects of dead live, snow, and wind loads (also temperature, creep, relaxation, shrinkage, settlement effects)

For more info' refer to the textbook
Degree of Precision

- The accuracy of engineering data is less than ¼ percent (20.5 kN, not 20.55 kN or worse, 20.55125 kN).
- Represent **final** solution values numerically to an accuracy of three significant digits.
 - If the number begins with 1, then use four significant digits.
 - Examples: 4.78, 728, 1.724, 0.1781, 32.1, 88300, 0.00968, 1056.
- Intermediate values are computed to five significant digits to avoid rounding errors.

Steel | The Material Facts

- Modern steel was first produced in 1738 in Sheffield, England, known as "crucible steel" in 1738 and was very pure, but difficult and expensive to produce.
- British Inventor Henry Bessemer produced the first economical steel in 1856.
- Today steel is produced in over 50 countries all across the world.
- To every ton of Portland Cement produced, 3 tons of wood and 10 tons of steel are produced.
- In 2003, China was the first country to produce more than 200 million tons of crude steel in a year (more than 20% of the world's steel is produced in China).
- China is the world's largest consumer of steel (cars, general industry, construction...)
- The United States and China are the largest importers of steel.
- Japan is the largest exporter of steel.
- Steel is the world's most recycled material. Steel is recycled mostly from junk cars (3-400,000 cars per year per steel mill; 27 cars / minute in North America).
- More than 60% of the steel produced annually is from recycled steel.
- Properties of steel are not altered by how many times it is recycled.
- Per pound of material, steel is the most efficient of all building materials.
- A small amount of steel can do load-carrying tasks with a fraction of the material needed from other materials such as concrete or wood.
- Steel is the densest of structural materials and therefore handles longer spans, and produces lighter structures with the greatest economy.
- Steel can be found in fasteners (nails...), structural components, rebar, sheet-metal, appliances, cars, ships, ...
Steel | Chemical Composition

Wrought Iron
- < 0.2 % Carbon
 - Soft & Malleable

Steel
- 0.2 - 2 % Carbon

Cast Iron
- < 3 - 4 % Carbon
 - Hard & Brittle

Controlled amounts of:
- Manganese, Phosphorous
- Silicon, Sulfur, Oxygen

Mild Steel
- 0.2 - 0.25 % Carbon

Medium Steel
- 0.25 - 0.45 % Carbon

Hard Steel
- 0.45 - 0.85 % Carbon

Spring Steel
- 0.85 - 1.85 % Carbon

Carbon Steel

Combination of:
- Chromium, Cobalt, Copper,
 - Molybdenum, Nickel,
 - Tungsten, Vanadium

Alloy Steel

Stainless Steel

Weathering Steel

The Material Steel | CHEMICAL COMPOSITION

Steel Design - Dr. Seshu Adluri
Steel | Chemical Composition

- Steel is an alloy of Iron, Carbon (<2%), and Manganese (<1%). It also contains small amounts of Phosphorous, Silicon, Sulfur and Oxygen.

- **Carbon Steel** these chemical elements are controlled to provide consistent quality and grade of steel.

 Carbon content greatly affects the properties of steel:
 - More Carbon increases: strength, hardness, corrosion-resistance
 - More Carbon decreases: malleability, ductility, and weldability
 - The amount of Carbon does NOT affect the Modulus of Elasticity (E) of the Steel

- **Alloy Steel** is Carbon Steel to which one or more chemical elements have been added to achieve certain physical or chemical properties.

 Stainless Steel
 Adding 15-18% Chromium and 7-8% Nickel produces corrosion-resistant steel

 Weathering Steel (Cor-Ten Steel)
 Adding Copper and Phosphorous creates a steel that forms an oxide coating, rust, that adheres to the base metal and prevents further corrosion.
Steel Production

- Iron ore constitutes 5% of earth’s crust, 70% of earth’s core is iron.
- U.S. has roughly 25% of world coal supply.
- Steel is heated to molten state to remove oxides.
- Three Types of Production Furnaces:
 - Open Hearth Furnace (OHF)
 - Basic Oxygen Furnace (BOF)
 - Electric Arc Furnace (EAF)
- Whether BOF or EAF all steel is recycled back into steel, so although BOF has a lower % of recycled steel, it is still as environmentally friendly.
- Refining is the addition of alloys to obtain certain characteristics in the steel:
 - Molybdenum: strength.
 - Manganese: resistance to abrasion and impact.
 - Vanadium: strength and toughness.
 - Nickel and chromium: toughness, stiffness and corrosion resistance.
- Electric Arc Furnace (EAF) process is environmentally safer.
- Casting: Liquid steel is cast into semi-finished products; billet, blooms.
- By 1980s computer controls were prevalent in steel mills.
Open Hearth Furnace (OHF):

- Discontinued in USA due to OSHA and EPA regulations, it wasted energy and manpower.
- Last Open Hearth Furnace in U.S. was closed down in 1980s.
- Extreme heat burned out impurities in iron.
- Accepts variable amounts of scraps (20-80%) .
- 3000°F minimum temperature required, 10 hours to accomplish.
- Worldwide, 3.6% of steel produced in 2003 was OHF.
Steel making
Steel making

Figure 1 Steel production processes
Steel making

Figure 2 Blast-furnace process
Steel making

Figure 3 Basic oxygen converter
Steel making

Figure 4 Electric arc furnace
Steel making

Figure 5 Ladle steelmaking process
Steel making

Up-hill teeming

- Teeming ladle
- Slide gate for flow control
- Centre riser bricks
- Ingot mould
- Base plate with runner bricks
- Base plate

Down-hill teeming

Figure 6 Ingot casting
Steel making

Figure 7 Continuous casting
Steel making

Relative of the raw steel products produced by continuous casting:

- **Slabs**: 1.25 metres wide x 230 mm thick, 12 metres long
- **Billets**: 90 - 160 mm square, 12 metres long
- **Blooms**: 630 mm x 400 mm, 5.0 - 6.0 metres long
Continuous casting (right, red arrows) is a method of working steel that conveys steel from its molten state to blooms, ingots, or slabs. The white-hot metal is poured into open-ended moulds and continues on through rollers cooled by water. A series of guide rollers further shapes the steel into the desired form.

However, hot rolling (left, blue arrows) is still the primary means of milling steel. This process begins with pre-shaped steel slabs, which are reheated in a soaking pit. The steel passes through a series of mills: the blooming mill, the roughing mill, and the finishing mill, which make it progressively thinner.

Finally, the steel is wound into coils and transported elsewhere for further processing.
Figure 9 Principal product routes
Steel making

- Ingot
- Slab
- Bloom
- Billet

Figure 10 Basic shapes in relative proportion
Steel making

http://www.stahlseite.de/index.htm
Steel making

- Continuous caster
Steel making

- Forging press

http://www.stahlseite.de/index.htm
Steel making

- Precision Forging m/c
Steel making

- Bar mill

http://www.stahlseite.de/index.htm
Steel making

- Coil box

http://www.stahlseite.de/index.htm
Steel making

- Cooling beds
Steel making

-Cooling beds

http://www.stahlseite.de/index.htm
Steel making

- Heat treatment

http://www.stahlseite.de/index.htm
Steel Rolling

- Cast steel is a relatively weak mass of coarse, uneven metal crystals, or 'grains'. Rolling causes this coarse grain structure to re-crystallize into a much finer grain structure, giving greater toughness, shock resistance and tensile (stress) strength.
- Rolling is the main method used to shape steel into different products after it has been cast. There are two types of rolling - hot and cold.
- The rolling process (for both hot and cold) consists of passing the steel between two rolls revolving at the same speed but in opposite directions. The gap between the rolls is smaller than the steel being rolled, so that the steel is reduced in thickness and at the same time lengthened.
- One set of rollers is called a stand, and in any one mill there can be a number of stands. One length of steel can pass through a stand a number of times so that it is gradually reduced in size and progressively rolled to the desired shape. A slab 230mm thick can end up only 1.5mm thick, but many times longer, after the hot rolling process.
Steel Rolling

- **Hot Rolling**
 Before hot rolling, slabs, blooms and billets are heated in a furnace to about 1200°C. This makes it easier to roll the steel and removes the rough, flaky surface, or scale.

- **Cold Rolling**
 Certain types of steel are also cold rolled after hot rolling. Before cold rolling the steel is cleaned with acid (pickled) to remove the scale.

 Cold rolling is carried out at room temperature and is rolled at very fast speeds using lubricants to reduce friction. Cold rolling increases strength, makes steel thinner and produces a bright smooth surface.
Steel making

Figure 8 Hot rolling process (Schematic)

Section volume is equal at A and B
Steel making

Figure 11 Primary mill rolls for slabs and blooms
Figure 13 Sequence of operations for universal beams
Cold-rolling after hot-rolling

- Cold Rolling is undertaken to:
 - Reduce the thickness
 - Improve the surface finish
 - Improve the thickness tolerances
 - To offer a range of "tempers"
 - As a preparation for surface coating
Rolling and forming
Rolling and forming
Rolling and forming
HSS forming

Form-Square Weld-Square (ERW) Process

Electric Resistance Welding (ERW) Process

Submerged Arc Weld (SAW) Process
Steel structure erection
Its cheesy cartoon time! 😊

Steel

- Steel
 - Not just for structures
 - It makes cartoon people too!

-Man and Lady of steel! - 😊
Material behaviour

\[d_0 = 0.5 \text{ in.} \]
\[L_0 = 2 \text{ in.} \]

Electrical–resistance strain gauge
Material behaviour

Burj Dubai

Material behaviour

Necking

Failure of a ductile material

(a) (b)
Material behaviour

Stress-strain diagram for mild steel

Taipei 101

Steel Design - Dr. Seshu Adluri
Material behaviour

Conventional and true stress-strain diagrams for ductile material (steel) (not to scale)

New York Freedom tower (proposed)
Material behaviour

- Temperature effects on material properties

Figure 12 Influence of temperature on the mechanical properties of structural steel (Example shown is Fe490)
Typical Steel Use

Sydney Harbour

2003 Lamborghini Murcilago
Hybernia platform (Grand banks, NL)
topsides are steel
Typical Steel Use

Steel Design - Dr. Seshu Adluri
Typical Steel Frame Structure

Steel Design - Dr. Seshu Adluri
Typical Steel Frame Structure
Steel Design - Dr. Seshu Adluri
Mumbai Airport
Chhatrapati Shivaji International Airport, Mumbai, India
Structures
Structures.....
Structures....
Structures

Crystal Cathedral (1980) - Garden Grove, CA

Flatiron Building (Fuller Building) (1903)
Walt Disney Concert Hall (2003) - Los Angeles, CA; Frank Gehry

Structures

- Seattle Public Library (2004)
- St. Louis Arch, 192mx192m
Bridges
Bridges

New River Gorge Bridge, the largest single span steel arch bridge in the western hemisphere. It measures 876 ft. from the bridge to the bottom of the gorge.

Old Nanpu Bridge (double loop ramp), Shanghai,
Bridges

Bridges in San Francisco
http://www.wunderground.com/blog/ozcazz/comment.html?entrynum=11&tstamp=200611

Steel Design - Dr. Seshu Adluri
Steel gives the flexibility to create the desired aesthetic effect using the structural members

Orient railway station, Lisbon, Portugal Architect: Santiago Calatrava
Exposed steel will require special processing that will impact the cost and schedule.
Architecturally Exposed Structural Steel - AESS
Typical Applications

- The entire structure or key portions may use AESS
- Popular applications include
 - Hanging walkways
 - Framing in atriums and lobbies
 - Office interiors
 - Canopies
 - Airport terminals
AESS
Canopy and Hanging Walkway
AWSS Atriums and Lobbies
AESS Office Interiors

Lindhout Associates Headquarters, Brighton, MI

Herman Miller Marketplace, Zeeland, MI Architects: Integrated Architecture, Grand Rapids, MI Photography by Bedrock Binding
AESS
Airport Terminals

The United Airlines Terminal, Chicago, IL
Architects: Murphy/Jahn and A. Epstein & Sons Int’l
AESS Open Web Beams

Open web beams are lighter and aesthetically attractive.

Computer-controlled cutters provide design flexibility.
Typical Steel-Concrete Structure
Structural Steel shapes

- Hot Rolled shapes – Section 6, CISC Handbook
 - (W) W-shapes (Wide Flange)
 - (S) Sections
 - (L) Angles
 - (C) Channels
 - (WT) Structural Tees
 - HSS
 - Plates,

- Built-up members
Structural Steel shapes

- Wide Flange Beam
- Steel Channel
- Tube Steel
- Steel Pipe
- Composite Steel Beam/Deck Detail
Structural Steel shapes
Fabrication facilities

Cambering machine

Fabrication bay
Fabrication facilities
Residual stresses

- Stresses can be left behind in steel shapes after certain events
 - Hot-rolling (due to differential cooling)
 - Welding (due to differential cooling)
 - Cold-forming (due to plastic deformation)
 - Excessive deformation
 - Etc.
Residual stresses

- Welding residual stresses

Figure 15 Residual stress
Residual stresses

- Hot-rolled stress contours
Residual stresses

- Idealized residual stresses in Hot-rolled shapes

Fig. 3.3 Residual-stress distribution in rolled wide-flange shapes.
References

- Many pictures in this file are taken from various sources such as CISC, AISC, etc. The copyrights for those materials are with the original sources. No copyright is claimed or implied by Dr. Seshu Adluri for things that are already under copyright protection. This file is for teaching purposes only.