
Connecting the Dot-Dots:
Model Checking Concurrency in a Security API

Robert N. M. Watson∗

University of Cambridge
Cambridge, UK

robert.watson@cl.cam.ac.uk

Jonathan Anderson
University of Cambridge

Cambridge, UK
jonathan.anderson@cl.cam.ac.uk

Abstract

Capsicum is a lightweight operating system capability sandbox framework planned for inclu-
sion in FreeBSD 9. While developing the system, we discovered a concurrency vulnerability in
which colluding sandboxed applications could manipulate the file system lookup API to escape from
sandboxing. To explore the problem further, we employed model checking to determine the min-
imum requirements for the semantics of file system access via UNIX APIs, and various strategies
for limiting API semantics in order to close the vulnerability. We also discovered that near-identical
vulnerabilities are present in at least one other piece of existing sandboxing technology.

1 Capsicum

Capsicum is a lightweight operating system capability framework that allows UNIX processes to abandon
access to global namespaces, operating in a capability mode. For example, an Apache worker process
entering capability mode is denied use of the rename() system call, but may continue to perform I/O
on file descriptors held before entering the sandbox, and may even have new capabilities assigned to it
via message passing. We allow directory capabilities to be passed to sandboxes, as shown in Figure 1,
granting access for specified operations to the directory and its children objects. In effect, this allows
delegations of the form “The sandbox may open for read any object under /var/www” or “The sandbox
may read or write all files and directories under /var/www/site1.

Apache Apache
Worker 1

Apache
Worker 2

Logical Application

/
etc var

apache passwd www

site1 site2

Figure 1: Partial delegation of a global filesystem namespace.

∗Generously supported by a grant from Google, Inc.

1

robert.watson@cl.cam.ac.uk
jonathan.anderson@cl.cam.ac.uk


Connecting the Dot-Dots Watson and Anderson

To achieve this delegation, Capsicum only allows objects “below” the director capability can be
accessed. This requires the UNIX path resolution routine, namei(), to implement an invariant: the parent
object for a directory capability can never be named. In our initial implementation, we modified namei()

to introduce a new constraint: any attempt to look up .. relative to the starting directory capability would
cause access control failure. This approach has a low implementation cost, and otherwise allows full file
system semantics in the subtree, such as creating, renaming, removing, and opening files and directories.

2 The Vulnerability

After implementing Capsicum, we encountered a concurrency vulnerability exploiting non-atomicity
in namei(): two threads can collude in manipulating the file system to escape the sandbox. Figure 2
illustrates how this can occur using two writable directory capabilities, one a subset of the other. When
the threads simultaneously issue openat() and renameat() system calls, the invariant “the parent of a
directory capability is unreachable” is violated without breaking the “can’t lookup .. from the directory
capability” constraint. In our example, /var is reachable despite neither capability granting access to it.

www

site1 stuff

www

site1 stuff

stuff

www

site1

stuff

✔

✔

renameat(base:www, "site1/stuff", "stuff")

openat(base:site1, "stuff/../..")

lookup("..")lookup("stuff")

www

site1 stuff

✔

var

lookup("..")

Figure 2: A malicious lookup which evades the constraint to break the invariant.

We have determined that this vulnerability affects other software providing partial namespace delega-
tion. We employing a responsible disclosure process, but will provide complete details at the workshop.

3 Mitigation

Fundamentally, partial file system delegation with UNIX semantics is extremely tricky: paths are ephemeral
traversal instructions, rather than first class objects. Therefore we had to consider fixes that limited UNIX
semantics: our first pass disallows .. in paths via directory capabilities, preventing cycles in modifica-
tions and traversals. However, it also breaks compatibility with existing applications. For instance, the
Apache web server’s configuration directory contains symbolic links from the mods-enabled directory
to mods-available, e.g. ../mods-available/auth basic.load. Other semantic weakening is also
sufficient, such as eliminating renameat(), and preventing concurrent namespace operations.

To better explore the problem, we employed the SPIN model checker to exhaustively test a model
of the problem. We found that our broad-stroke solution was effective, but we also found other, more
nuanced solutions to the security vulnerability.

2


	Capsicum
	The Vulnerability
	Mitigation

