
Capsicum: practical capabilities for UNIX

Robert N. M. Watson
University of Cambridge

Jonathan Anderson
University of Cambridge

Ben Laurie
Google UK Ltd.

Kris Kennaway
Google UK Ltd.

Abstract

Capsicum is a lightweight operating system capabil-
ity and sandbox framework planned for inclusion in
FreeBSD 9. Capsicum extends, rather than replaces,
UNIX APIs, providing new kernel primitives (sandboxed
capability mode and capabilities) and a userspace sand-
box API. These tools support compartmentalisation of
monolithic UNIX applications into logical applications,
an increasingly common goal supported poorly by dis-
cretionary and mandatory access control. We demon-
strate our approach by adapting core FreeBSD utilities
and Google’s Chromium web browser to use Capsicum
primitives, and compare the complexity and robustness
of Capsicum with other sandboxing techniques.

1 Introduction

Capsicum is an API that brings capabilities to UNIX. Ca-
pabilities are unforgeable tokens of authority, and have
long been the province of research operating systems
such as PSOS [16] and EROS [23]. UNIX systems have
less fine-grained access control than capability systems,
but are very widely deployed. By adding capability prim-
itives to standard UNIX APIs, Capsicum gives applica-
tion authors a realistic adoption path for one of the ideals
of OS security: least-privilege operation. We validate our
approach through an open source prototype of Capsicum
built on (and now planned for inclusion in) FreeBSD 9.

Today, many popular security-critical applications
have been decomposed into parts with different privi-
lege requirements, in order to limit the impact of a single
vulnerability by exposing only limited privileges to more
risky code. Privilege separation [17], or compartmentali-

sation, is a pattern that has been adopted for applications
such as OpenSSH, Apple’s SecurityServer, and, more re-
cently, Google’s Chromium web browser. Compartmen-
talisation is enforced using various access control tech-
niques, but only with significant programmer effort and

significant technical limitations: current OS facilities are
simply not designed for this purpose.

The access control systems in conventional (non-
capability-oriented) operating systems are Discretionary

Access Control (DAC) and Mandatory Access Control

(MAC). DAC was designed to protect users from each
other: the owner of an object (such as a file) can specify
permissions for it, which are checked by the OS when
the object is accessed. MAC was designed to enforce
system policies: system administrators specify policies
(e.g. “users cleared to Secret may not read Top Secret
documents”), which are checked via run-time hooks in-
serted into many places in the operating system’s kernel.

Neither of these systems was designed to address the
case of a single application processing many types of in-
formation on behalf of one user. For instance, a mod-
ern web browser must parse HTML, scripting languages,
images and video from many untrusted sources, but be-
cause it acts with the full power of the user, has access to
all his or her resources (such implicit access is known as
ambient authority).

In order to protect user data from malicious JavaScript,
Flash, etc., the Chromium web browser is decomposed
into several OS processes. Some of these processes han-
dle content from untrusted sources, but their access to
user data is restricted using DAC or MAC mechanism
(the process is sandboxed).

These mechanisms vary by platform, but all require a
significant amount of programmer effort (from hundreds
of lines of code or policy to, in one case, 22,000 lines
of C++) and, sometimes, elevated privilege to bootstrap
them. Our analysis shows significant vulnerabilities in
all of these sandbox models due to inherent flaws or in-
correct use (see Section 5).

Capsicum addresses these problems by introducing
new (and complementary) security primitives to support
compartmentalisation: capability mode and capabilities.
Capsicum capabilities should not be confused with op-
erating system privileges, occasionally referred to as ca-

First published in Proceedings of the 19th USENIX Security Symposium.

UNIX process
ambient authority

Browser process
ambient authority

Renderer process
capability mode

Renderer process
capability mode ...

Kernel

Traditional UNIX application Capsicum logical application

becomes

Figure 1: Capsicum helps applications self-compartmentalise.

pabilities in the OS literature. Capsicum capabilities are
an extension of UNIX file descriptors, and reflect rights
on specific objects, such as files or sockets. Capabilities
may be delegated from process to process in a granular
way in the same manner as other file descriptor types: via
inheritance or message-passing. Operating system priv-
ilege, on the other hand, refers to exemption from ac-
cess control or integrity properties granted to processes
(perhaps assigned via a role system), such as the right
to override DAC permissions or load kernel modules. A
fine-grained privilege policy supplements, but does not
replace, a capability system such as Capsicum. Like-
wise, DAC and MAC can be valuable components of a
system security policy, but are inadequate in addressing
the goal of application privilege separation.

We have modified several applications, including base
FreeBSD utilities and Chromium, to use Capsicum prim-
itives. No special privilege is required, and code changes
are minimal: the tcpdump utility, plagued with security
vulnerabilities in the past, can be sandboxed with Cap-
sicum in around ten lines of code, and Chromium can
have OS-supported sandboxing in just 100 lines.

In addition to being more secure and easier to use than
other sandboxing techniques, Capsicum performs well:
unlike pure capability systems where system calls neces-
sarily employ message passing, Capsicum’s capability-
aware system calls are just a few percent slower than
their UNIX counterparts, and the gzip utility incurs a
constant-time penalty of 2.4 ms for the security of a Cap-
sicum sandbox (see Section 6).

2 Capsicum design

Capsicum is designed to blend capabilities with UNIX.
This approach achieves many of the benefits of least-
privilege operation, while preserving existing UNIX
APIs and performance, and presents application authors
with an adoption path for capability-oriented design.

Capsicum extends, rather than replaces, standard
UNIX APIs by adding kernel-level primitives (a sand-
boxed capability mode, capabilities and others) and
userspace support code (libcapsicum and a capability-

aware run-time linker). Together, these extensions sup-
port application compartmentalisation, the decomposi-
tion of monolithic application code into components that
will run in independent sandboxes to form logical appli-

cations, as shown in Figure 1.
Capsicum requires application modification to exploit

new security functionality, but this may be done grad-
ually, rather than requiring a wholesale conversion to a
pure capability model. Developers can select the changes
that maximise positive security impact while minimis-
ing unacceptable performance costs; where Capsicum re-
places existing sandbox technology, a performance im-
provement may even be seen.

This model requires a number of pragmatic design
choices, not least the decision to eschew micro-kernel ar-
chitecture and migration to pure message-passing. While
applications may adopt a message-passing approach, and
indeed will need to do so to fully utilise the Capsicum
architecture, we provide “fast paths” in the form of di-
rect system call manipulation of kernel objects through
delegated file descriptors. This allows native UNIX per-
formance for file system I/O, network access, and other
critical operations, while leaving the door open to tech-
niques such as message-passing system calls for cases
where that proves desirable.

2.1 Capability mode

Capability mode is a process credential flag set by a new
system call, cap enter; once set, the flag is inherited
by all descendent processes, and cannot be cleared. Pro-
cesses in capability mode are denied access to global
namespaces such as the filesystem and PID namespaces
(see Figure 2). In addition to these namespaces, there

are several system management interfaces that must be
protected to maintain UNIX process isolation. These in-
terfaces include /dev device nodes that allow physical
memory or PCI bus access, some ioctl operations on
sockets, and management interfaces such as reboot and
kldload, which loads kernel modules.

Access to system calls in capability mode is also re-
stricted: some system calls requiring global namespace
access are unavailable, while others are constrained. For
instance, sysctl can be used to query process-local in-
formation such as address space layout, but also to moni-
tor a system’s network connections. We have constrained
sysctl by explicitly marking ≈30 of 3000 parameters
as permitted in capability mode; all others are denied.

The system calls which require constraints are
sysctl, shm open, which is permitted to create anony-

mous memory objects, but not named ones, and the
openat family of system calls. These calls already ac-
cept a file descriptor argument as the directory to per-
form the open, rename, etc. relative to; in capabil-
ity mode, they are constrained so that they can only
operate on objects “under” this descriptor. For in-
stance, if file descriptor 4 is a capability allowing ac-
cess to /lib, then openat(4, "libc.so.7") will suc-
ceed, whereas openat(4, "../etc/passwd") and
openat(4, "/etc/passwd") will not.

2.2 Capabilities

The most critical choice in adding capability support to a
UNIX system is the relationship between capabilities and
file descriptors. Some systems, such as Mach/BSD, have
maintained entirely independent notions: Mac OS X pro-
vides each task with both indexed capabilities (ports) and
file descriptors. Separating these concerns is logical, as
Mach ports have different semantics from file descrip-
tors; however, confusing results can arise for application
developers dealing with both Mach and BSD APIs, and
we wanted to reuse existing APIs as much as possible.
As a result, we chose to extend the file descriptor ab-
straction, and introduce a new file descriptor type, the
capability, to wrap and protect raw file descriptors.

File descriptors already have some properties of ca-
pabilities: they are unforgeable tokens of authority, and
can be inherited by a child process or passed between
processes that share an IPC channel. Unlike “pure” ca-
pabilities, however, they confer very broad rights: even
if a file descriptor is read-only, operations on meta-data
such as fchmod are permitted. In the Capsicum model,
we restrict these operations by wrapping the descriptor
in a capability and permitting only authorised operations
via the capability, as shown in Figure 3.

The cap new system call creates a new capability
given an existing file descriptor and a mask of rights;

if the original descriptor is a capability, the requested
rights must be a subset of the original rights. Capabil-
ity rights are checked by fget, the in-kernel code for
converting file descriptor arguments to system calls into
in-kernel references, giving us confidence that no paths
exist to access file descriptors without capability checks.
Capability file descriptors, as with most others in the sys-
tem, may be inherited across fork and exec, as well as
passed via UNIX domain sockets.

There are roughly 60 possible mask rights on each
capability, striking a balance between message-passing
(two rights: send and receive), and MAC systems (hun-
dreds of access control checks). We selected rights
to align with logical methods on file descriptors: sys-
tem calls implementing semantically identical operations
require the same rights, and some calls may require
multiple rights. For example, pread (read to mem-
ory) and preadv (read to a memory vector) both re-
quire CAP READ in a capability’s rights mask, and read
(read bytes using the file offset) requires CAP READ |
CAP SEEK in a capability’s rights mask.

Capabilities can wrap any type of file descriptor in-
cluding directories, which can then be passed as argu-
ments to openat and related system calls. The *at sys-
tem calls begin relative lookups for file operations with
the directory descriptor; we disallow some cases when
a capability is passed: absolute paths, paths contain-
ing “..” components, and AT FDCWD, which requests a
lookup relative to the current working directory. With
these constraints, directory capabilities delegate file sys-
tem namespace subsets, as shown in Figure 4. This
allows sandboxed processes to access multiple files in
a directory (such as the library path) without the per-
formance overhead or complexity of proxying each file
open via IPC to a process with ambient authority.

The “..” restriction is a conservative design, and pre-
vents a subtle problem similar to historic chroot vul-
nerabilities. A single directory capability that only en-
forces containment by preventing “..” lookup on the root
of a subtree operates correctly; however, two colluding
sandboxes (or a single sandbox with two capabilities) can
race to actively rearrange a tree so that the check always
succeeds, allowing escape from a delegated subset. It
is possible to imagine less conservative solutions, such
as preventing upward renames that could introduce ex-
ploitable cycles during lookup, or additional synchroni-
sation; these strike us as more risky tactics, and we have
selected the simplest solution, at some cost to flexibility.

Many past security extensions have composed poorly
with UNIX security leading to vulnerabilities; thus, we
disallow privilege elevation via fexecve using setuid
and setgid binaries in capability mode. This restriction
does not prevent setuid binaries from using sandboxes.

Namespace Description
Process ID (PID) UNIX processes are identified by unique IDs. PIDs are returned by fork and used

for signal delivery, debugging, monitoring, and status collection.
File paths UNIX files exist in a global, hierarchical namespace, which is protected by discre-

tionary and mandatory access control.
NFS file handles The NFS client and server identify files and directories on the wire using a flat,

global file handle namespace. They are also exposed to processes to support the
lock manager daemon and optimise local file access.

File system ID File system IDs supplement paths to mount points, and are used for forceable un-
mount when there is no valid path to the mount point.

Protocol addresses Protocol families use socket addresses to name local and foreign endpoints. These
exist in global namespaces, such as IPv4 addresses and ports, or the file system
namespace for local domain sockets.

Sysctl MIB The sysctl management interface uses numbered and named entries, used to get
or set system information, such as process lists and tuning parameters.

System V IPC System V IPC message queues, semaphores, and shared memory segments exist in
a flat, global integer namespace.

POSIX IPC POSIX defines similar semaphore, message queue, and shared memory APIs, with
an undefined namespace: on some systems, these are mapped into the file system;
on others they are simply a flat global namespaces.

System clocks UNIX systems provide multiple interfaces for querying and manipulating one or
more system clocks or timers.

Jails The management namespace for FreeBSD-based virtualised environments.
CPU sets A global namespace for affinity policies assigned to processes and threads.

Figure 2: Global namespaces in the FreeBSD operating kernel

2.3 Run-time environment

Even with Capsicum’s kernel primitives, creating sand-
boxes without leaking undesired resources via file de-
scriptors, memory mappings, or memory contents is dif-
ficult. libcapsicum therefore provides an API for start-
ing scrubbed sandbox processes, and explicit delega-
tion APIs to assign rights to sandboxes. libcapsicum
cuts off the sandbox’s access to global namespaces via
cap enter, but also closes file descriptors not positively
identified for delegation, and flushes the address space
via fexecve. Sandbox creation returns a UNIX domain
socket that applications can use for inter-process com-
munication (IPC) between host and sandbox; it can also
be used to grant additional rights as the sandbox runs.

3 Capsicum implementation

3.1 Kernel changes

Many system call and capability constraints are applied
at the point of implementation of kernel services, rather
than by simply filtering system calls. The advantage
of this approach is that a single constraint, such as the
blocking of access to the global file system namespace,
can be implemented in one place, namei, which is re-

sponsible for processing all path lookups. For example,
one might not have expected the fexecve call to cause
global namespace access, since it takes a file descriptor
as its argument rather than a path for the binary to exe-
cute. However, the file passed by file descriptor speci-
fies its run-time linker via a path embedded in the binary,
which the kernel will then open and execute.

Similarly, capability rights are checked by the ker-
nel function fget, which converts a numeric descriptor
into a struct file reference. We have added a new
rights argument, allowing callers to declare what ca-
pability rights are required to perform the current oper-
ation. If the file descriptor is a raw UNIX descriptor,
or wrapped by a capability with sufficient rights, the op-
eration succeeds. Otherwise, ENOTCAPABLE is returned.
Changing the signature of fget allows us to use the com-
piler to detect missed code paths, providing greater assur-
ance that all cases have been handled.

One less trivial global namespace to handle is the pro-
cess ID (PID) namespace, which is used for process cre-
ation, signalling, debugging and exit status, critical op-
erations for a logical application. Another problem for
logical applications is that libraries cannot create and
manage worker processes without interfering with pro-
cess management in the application itself—unexpected

8

10

14
...

Process file
descriptors

struct
file

struct
vnode

struct
file

struct capability

mask = READ | WRITE

struct
file

struct capability

mask = READ

...

Figure 3: Capabilities “wrap” normal file descriptors, masking the set of permitted methods.

Apache Apache
Worker 1

Apache
Worker 2

Logical Application

/
etc var

apache passwd www

site1 site2

Figure 4: Portions of the global filesystem namespace can be delegated to sandboxed processes.

SIGCHLD signals are delivered to the application, and un-
expected process IDs are returned by wait.

Process descriptors address these problems in a man-
ner similar to Mach task ports: creating a process with
pdfork returns a file descriptor to use for process man-
agement tasks, such as monitoring for exit via poll.
When the process descriptor is closed, the process is ter-
minated, providing a user experience consistent with that
of monolithic processes: when a user hits Ctrl-C, or the
application segfaults, all processes in the logical applica-
tion terminate. Termination does not occur if reference
cycles exist among processes, suggesting the need for a
new “logical application” primitive—see Section 7.

3.2 The Capsicum run-time environment

Removing access to global namespaces forces funda-
mental changes to the UNIX run-time environment.

Even the most basic UNIX operations for starting pro-
cesses and running programs have been eliminated:
fork and exec both rely on global namespaces. Respon-
sibility for launching a sandbox is shared. libcapsicum
is invoked by the application, and responsible for forking
a new process, gathering together delegated capabilities
from both the application and run-time linker, and di-
rectly executing the run-time linker, passing the sandbox
binary via a capability. ELF headers normally contain a
hard-coded path to the run-time linker to be used with the
binary. We execute the Capsicum-aware run-time linker
directly, eliminating this dependency on the global file
system namespace.

Once rtld-elf-cap is executing in the new process,
it loads and links the binary using libraries loaded via li-
brary directory capabilities set up by libcapsicum. The
main function of a program can call lcs get to deter-
mine whether it is in a sandbox, retrieve sandbox state,

Application
calls

libcapsicum
with fdlist to

create
sandbox

libcapsicum merges
application and rtld

fdlists, exports to shared
memory; flushes

undelegated capabilities;
calls fexecve

rtld-elf generates
library path fdlist

pdfork fexecve

rtld-elf-cap
links

application,
calls cap_main

Application
executes; queries

libcapsicum for
delegated

capabilities as
needed

libcapsicum unpacks
fdlist from shared
memory; provides

capabilities to
application on demand

LIBCAPSICUM_FDLIST
shared memory,
application fds

 LD_BINARY
 binary fd

 LD_LIBRARY_DIRS
 library fds

Figure 5: Process and components involved in creating a new libcapsicum sandbox

query creation-time delegated capabilities, and retrieve
an IPC handle so that it can process RPCs and receive
run-time delegated capabilities. This allows a single bi-
nary to execute both inside and outside of a sandbox, di-
verging behaviour based on its execution environment.
This process is illustrated in greater detail in Figure 5.

Once in execution, the application is linked against
normal C libraries and has access to much of the tradi-
tional C run-time, subject to the availability of system
calls that the run-time depends on. An IPC channel, in
the form of a UNIX domain socket, is set up automat-
ically by libcapsicum to carry RPCs and capabilities
delegated after the sandbox starts. Capsicum does not
provide or enforce the use of a specific Interface De-
scription Language (IDL), as existing compartmentalised
or privilege-separated applications have their own, of-
ten hand-coded, RPC marshalling already. Here, our
design choice differs from historic capability systems,
which universally have selected a specific IDL, such as
the Mach Interface Generator (MIG) on Mach.
libcapsicum’s fdlist (file descriptor list) abstrac-

tion allows complex, layered applications to declare ca-
pabilities to be passed into sandboxes, in effect provid-
ing a sandbox template mechanism. This avoids encod-
ing specific file descriptor numbers into the ABI between
applications and their sandbox components, a technique
used in Chromium that we felt was likely to lead to pro-
gramming errors. Of particular concern is hard-coding of
file descriptor numbers for specific purposes, when those
descriptor numbers may already have been used by other
layers of the system. Instead, application and library

components declare process-local names bound to file
descriptor numbers before creating the sandbox; match-
ing components in the sandbox can then query those
names to retrieve (possibly renumbered) file descriptors.

4 Adapting applications to use Capsicum

Adapting applications for use with sandboxing is a non-
trivial task, regardless of the framework, as it requires
analysing programs to determine their resource depen-
dencies, and adopting a distributed system programming
style in which components must use message passing or
explicit shared memory rather than relying on a common
address space for communication. In Capsicum, pro-
grammers have a choice of working directly with capa-
bility mode or using libcapsicum to create and manage
sandboxes, and each model has its merits and costs in
terms of development complexity, performance impact,
and security:

1. Modify applications to use cap enter directly in
order to convert an existing process with ambient
privilege into a capability mode process inheriting
only specific capabilities via file descriptors and vir-
tual memory mappings. This works well for ap-
plications with a simple structure like: open all re-
sources, then process them in an I/O loop, such as
programs operating in a UNIX pipeline, or interact-
ing with the network for the purposes of a single
connection. The performance overhead will typi-
cally be extremely low, as changes consist of encap-

sulating broad file descriptor rights into capabilities,
followed by entering capability mode. We illustrate
this approach with tcpdump.

2. Use cap enter to reinforce the sandboxes of ap-
plications with existing privilege separation or com-
partmentalisation. These applications have a more
complex structure, but are already aware that some
access limitations are in place, so have already been
designed with file descriptor passing in mind. Re-
fining these sandboxes can significantly improve se-
curity in the event of a vulnerability, as we show
for dhclient and Chromium; the performance and
complexity impact of these changes will be low
because the application already adopts a message
passing approach.

3. Modify the application to use the full
libcapsicum API, introducing new compart-
mentalisation or reformulating existing privilege
separation. This offers significantly stronger
protection, by virtue of flushing capability lists and
residual memory from the host environment, but at
higher development and run-time costs. Boundaries
must be identified in the application such that not
only is security improved (i.e., code processing
risky data is isolated), but so that resulting perfor-
mance is sufficiently efficient. We illustrate this
technique using modifications to gzip.

Compartmentalised application development is, of ne-
cessity, distributed application development, with soft-
ware components running in different processes and
communicating via message passing. Distributed debug-
ging is an active area of research, but commodity tools
are unsatisfying and difficult to use. While we have not
attempted to extend debuggers, such as gdb, to better
support distributed debugging, we have modified a num-
ber of FreeBSD tools to improve support for Capsicum
development, and take some comfort in the generally
synchronous nature of compartmentalised applications.

The FreeBSD procstat command inspects kernel-
related state of running processes, including file descrip-
tors, virtual memory mappings, and security credentials.
In Capsicum, these resource lists become capability lists,
representing the rights available to the process. We have
extended procstat to show new Capsicum-related in-
formation, such as capability rights masks on file de-
scriptors and a flag in process credential listings to indi-
cate capability mode. As a result, developers can directly
inspect the capabilities inherited or passed to sandboxes.

When adapting existing software to run in capability
mode, identifying capability requirements can be tricky;
often the best technique is to discover them through
dynamic analysis, identifying missing dependencies by

tracing real-world use. To this end, capability-related
failures return a new errno value, ENOTCAPABLE, dis-
tinguishing them from other failures, and system calls
such as open are blocked in namei, rather than the sys-
tem call boundary, so that paths are shown in FreeBSD’s
ktrace facility, and can be utilised in DTrace scripts.

Another common compartmentalised development
strategy is to allow the multi-process logical application
to be run as a single process for debugging purposes.
libcapsicum provides an API to query whether sand-
boxing for the current application or component is en-
abled by policy, making it easy to enable and disable
sandboxing for testing. As RPCs are generally syn-
chronous, the thread stack in the sandbox process is logi-
cally an extension of the thread stack in the host process,
which makes the distributed debugging task less fraught
than it otherwise might appear.

4.1 tcpdump

tcpdump provides an excellent example of Capsicum
primitives offering immediate wins through straight-
forward changes, but also the subtleties that arise when
compartmentalising software not written with that goal
in mind. tcpdump has a simple model: compile a pat-
tern into a BPF filter, configure a BPF device as an in-
put source, and loop writing captured packets rendered as
text. This structure lends itself to sandboxing: resources
are acquired early with ambient privilege, and later pro-
cessing depends only on held capabilities, so can execute
in capability mode. The two-line change shown in Fig-
ure 6 implements this conversion.

This significantly improves security, as historically
fragile packet-parsing code now executes with reduced
privilege. However, further analysis with the procstat
tool is required to confirm that only desired capabili-
ties are exposed. While there are few surprises, un-
constrained access to a user’s terminal connotes signif-
icant rights, such as access to key presses. A refinement,
shown in Figure 7, prevents reading stdin while still al-
lowing output. Figure 8 illustrates procstat on the re-
sulting process, including capabilities wrapping file de-
scriptors in order to narrow delegated rights.
ktrace reveals another problem, libc DNS resolver

code depends on file system access, but not until after
cap enter, leading to denied access and lost function-
ality, as shown in Figure 9.

This illustrates a subtle problem with sandboxing:
highly layered software designs often rely on on-demand
initialisation, lowering or avoiding startup costs, and
those initialisation points are scattered across many com-
ponents in system and application code. This is corrected
by switching to the lightweight resolver, which sends
DNS queries to a local daemon that performs actual res-

+ if (cap_enter() < 0)
+ error("cap_enter: %s", pcap_strerror(errno));

status = pcap_loop(pd, cnt, callback, pcap_userdata);

Figure 6: A two-line change adding capability mode to tcpdump: cap enter is called prior to the main libpcap
(packet capture) work loop. Access to global file system, IPC, and network namespaces is restricted.

+ if (lc_limitfd(STDIN_FILENO, CAP_FSTAT) < 0)
+ error("lc_limitfd: unable to limit STDIN_FILENO");
+ if (lc_limitfd(STDOUT_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+ error("lc_limitfd: unable to limit STDOUT_FILENO");
+ if (lc_limitfd(STDERR_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+ error("lc_limitfd: unable to limit STDERR_FILENO");

Figure 7: Using lc limitfd, tcpdump can further narrow rights delegated by inherited file descriptors, such as
limiting permitted operations on STDIN to fstat.

PID COMM FD T FLAGS CAPABILITIES PRO NAME
1268 tcpdump 0 v rw------c fs - /dev/pts/0
1268 tcpdump 1 v -w------c wr,se,fs - /dev/null
1268 tcpdump 2 v -w------c wr,se,fs - /dev/null
1268 tcpdump 3 v rw------- - - /dev/bpf

Figure 8: procstat -fC displays capabilities held by a process; FLAGS represents the file open flags, whereas
CAPABILITIES represents the capabilities rights mask. In the case of STDIN, only fstat (fs) has been granted.

1272 tcpdump CALL open(0x80092477c,O_RDONLY,<unused>0x1b6)
1272 tcpdump NAMI "/etc/resolv.conf"
1272 tcpdump RET connect -1 errno 78 Function not implemented
1272 tcpdump CALL socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP)
1272 tcpdump RET socket 4
1272 tcpdump CALL connect(0x4,0x7fffffffe080,0x10)
1272 tcpdump RET connect -1 errno 78 Function not implemented

Figure 9: ktrace reveals a problem: DNS resolution depends on file system and TCP/IP namespaces after cap enter.

PID COMM FD T FLAGS CAPABILITIES PRO NAME
18988 dhclient 0 v rw------- - - /dev/null
18988 dhclient 1 v rw------- - - /dev/null
18988 dhclient 2 v rw------- - - /dev/null
18988 dhclient 3 s rw------- - UDD /var/run/logpriv
18988 dhclient 5 s rw------- - ?
18988 dhclient 6 p rw------- - - -
18988 dhclient 7 v -w------- - - /var/db/dhclient.leas
18988 dhclient 8 v rw------- - - /dev/bpf
18988 dhclient 9 s rw------- - IP? 0.0.0.0:0 0.0.0.0:0

Figure 10: Capabilities held by dhclient before Capsicum changes: several unnecessary rights are present.

olution, addressing both file system and network address
namespace concerns. Despite these limitations, this ex-
ample of capability mode and capability APIs shows that
even minor code changes can lead to dramatic security
improvements, especially for a critical application with a
long history of security problems.

4.2 dhclient

FreeBSD ships the OpenBSD DHCP client, which in-
cludes privilege separation support. On BSD systems,
the DHCP client must run with privilege to open BPF
descriptors, create raw sockets, and configure network
interfaces. This creates an appealing target for attackers:
network code exposed to a complex packet format while
running with root privilege. The DHCP client is afforded
only weak tools to constrain operation: it starts as the
root user, opens the resources its unprivileged compo-
nent will require (raw socket, BPF descriptor, lease con-
figuration file), forks a process to continue privileged ac-
tivities (such as network configuration), and then con-
fines the parent process using chroot and the setuid
family of system calls. Despite hardening of the BPF
ioctl interface to prevent reattachment to another in-
terface or reprogramming the filter, this confinement is
weak; chroot limits only file system access, and switch-
ing credentials offers poor protection against weak or in-
correctly configured DAC protections on the sysctl and
PID namespaces.

Through a similar two-line change to that in tcpdump,
we can reinforce (or, through a larger change, replace)
existing sandboxing with capability mode. This instantly
denies access to the previously exposed global names-
paces, while permitting continued use of held file de-
scriptors. As there has been no explicit flush of address
space, memory, or file descriptors, it is important to ana-
lyze what capabilities have been leaked into the sandbox,
the key limitation to this approach. Figure 10 shows a
procstat -fC analysis of the file descriptor array.

The existing dhclient code has done an effective job
at eliminating directory access, but continues to allow the
sandbox direct rights to submit arbitrary log messages to
syslogd, modify the lease database, and a raw socket on
which a broad variety of operations could be performed.
The last of these is of particular interest due to ioctl;
although dhclient has given up system privilege, many
network socket ioctls are defined, allowing access to
system information. These are blocked in Capsicum’s
capability mode.

It is easy to imagine extending existing privilege sep-
aration in dhclient to use the Capsicum capability fa-
cility to further constrain file descriptors inherited in the
sandbox environment, for example, by limiting use of
the IP raw socket to send and recv, disallowing ioctl.

Use of the libcapsicum API would require more sig-
nificant code changes, but as dhclient already adopts a
message passing structure to communicate with its com-
ponents, it would be relatively straight forward, offer-
ing better protection against capability and memory leak-
age. Further migration to message passing would pre-
vent arbitrary log messages or direct unformatted writes
to dhclient.leases.em by constraining syntax.

4.3 gzip

The gzip command line tool presents an interesting tar-
get for conversion for several reasons: it implements
risky compression/decompression routines that have suf-
fered past vulnerabilities, it contains no existing com-
partmentalisation, and it executes with ambient user
(rather than system) privileges. Historic UNIX sandbox-
ing techniques, such as chroot and ephemeral UIDs are
a poor match because of their privilege requirement, but
also because (unlike with dhclient), there’s no expecta-
tion that a single sandbox exist—many gzip sessions
can run independently for many different users, and there
can be no assumption that placing them in the same sand-
box provides the desired security properties.

The first step is to identify natural fault lines in the ap-
plication: for example, code that requires ambient priv-
ilege (due to opening files or building network connec-
tions), and code that performs more risky activities, such
as parsing data and managing buffers. In gzip, this split
is immediately obvious: the main run loop of the ap-
plication processes command line arguments, identifies
streams and objects to perform processing on and send
results to, and then feeds them to compress routines that
accept input and output file descriptors. This suggests a
partitioning in which pairs of descriptors are submitted to
a sandbox for processing after the ambient privilege pro-
cess opens them and performs initial header handling.

We modified gzip to use libcapsicum, intercept-
ing three core functions and optionally proxying them
using RPCs to a sandbox based on policy queried from
libcapsicum, as shown in Figure 11. Each RPC passes
two capabilities, for input and output, to the sandbox, as
well as miscellaneous fields such as returned size, orig-
inal filename, and modification time. By limiting capa-
bility rights to a combination of CAP READ, CAP WRITE,
and CAP SEEK, a tightly constrained sandbox is created,
preventing access to any other files in the file system, or
other globally named resources, in the event a vulnera-
bility in compression code is exploited.

These changes add 409 lines (about 16%) to the size of
the gzip source code, largely to marshal and un-marshal
RPCs. In adapting gzip, we were initially surprised to
see a performance improvement; investigation of this un-
likely result revealed that we had failed to propagate the

Function RPC Description
gz compress PROXIED GZ COMPRESS zlib-based compression
gz uncompress PROXIED GZ UNCOMPRESS zlib-based decompression
unbzip2 PROXIED UNBZIP2 bzip2-based decompression

Figure 11: Three gzip functions are proxied via RPC to the sandbox

compression level (a global variable) into the sandbox,
leading to the incorrect algorithm selection. This serves
as reminder that code not originally written for decompo-
sition requires careful analysis. Oversights such as this
one are not caught by the compiler: the variable was cor-
rectly defined in both processes, but never propagated.

Compartmentalisation of gzip raises an important de-
sign question when working with capability mode: the
changes were small, but non-trivial: is there a better
way to apply sandboxing to applications most frequently
used in pipelines? Seaborn has suggested one possi-
bility: a Principle of Least Authority Shell (PLASH),
in which the shell runs with ambient privilege and
pipeline components are placed in sandboxes by the
shell [21]. We have begun to explore this approach on
Capsicum, but observe that the design tension exists here
as well: gzip’s non-pipeline mode performs a number of
application-specific operations requiring ambient privi-
lege, and logic like this may be equally (if not more)
awkward if placed in the shell. On the other hand, when
operating purely in a pipeline, the PLASH approach of-
fers the possibility of near-zero application modification.

Another area we are exploring is library self-
compartmentalisation. With this approach, library code
sandboxes portions of itself transparently to the host ap-
plication. This approach motivated a number of our de-
sign choices, especially as relates to the process model:
masking SIGCHLD delivery to the parent when using pro-
cess descriptors allows libraries to avoid disturbing ap-
plication state. This approach would allow video codec
libraries to sandbox portions of themselves while exe-
cuting in an unmodified web browser. However, library
APIs are often not crafted for sandbox-friendliness: one
reason we placed separation in gzip rather than libz is
that gzip provided internal APIs based on file descrip-
tors, whereas libz provided APIs based on buffers. For-
warding capabilities offers full UNIX I/O performance,
whereas the cost of performing RPCs to transfer buffers
between processes scales with file size. Likewise, his-
toric vulnerabilities in libjpeg have largely centred on
callbacks to applications rather than existing in isolation
in the library; such callback interfaces require significant
changes to run in an RPC environment.

4.4 Chromium

Google’s Chromium web browser uses a multi-process
architecture similar to a Capsicum logical application to
improve robustness [18]. In this model, each tab is as-
sociated with a renderer process that performs the risky
and complex task of rendering page contents through
page parsing, image rendering, and JavaScript execution.
More recent work on Chromium has integrated sandbox-
ing techniques to improve resilience to malicious attacks
rather than occasional instability; this has been done in
various ways on different supported operating systems,
as we will discuss in detail in Section 5.

The FreeBSD port of Chromium did not include sand-
boxing, and the sandboxing facilities provided as part of
the similar Linux and Mac OS X ports bear little resem-
blance to Capsicum. However, the existing compartmen-
talisation meant that several critical tasks had already
been performed:

• Chromium assumes that processes can be converted
into sandboxes that limit new object access

• Certain services were already forwarded to render-
ers, such as font loading via passed file descriptors

• Shared memory is used to transfer output between
renderers and the web browser

• Chromium contains RPC marshalling and passing
code in all the required places

The only significant Capsicum change to the FreeBSD
port of Chromium was to switch from System V shared
memory (permitted in Linux sandboxes) to the POSIX
shared memory code used in the Mac OS X port
(capability-oriented and permitted in Capsicum’s capa-
bility mode). Approximately 100 additional lines of code
were required to introduce calls to lc limitfd to limit
access to file descriptors inherited by and passed to sand-
box processes, such as Chromium data pak files, stdio,
and /dev/random, font files, and to call cap enter.
This compares favourably with the 4.3 million lines of
code in the Chromium source tree, but would not have
been possible without existing sandbox support in the de-
sign. We believe it should be possible, without a signif-
icantly larger number of lines of code, to explore using
the libcapsicum API directly.

Operating system Model Line count Description
Windows ACLs 22,350 Windows ACLs and SIDs
Linux chroot 605 setuid root helper sandboxes renderer
Mac OS X Seatbelt 560 Path-based MAC sandbox
Linux SELinux 200 Restricted sandbox type enforcement domain
Linux seccomp 11,301 seccomp and userspace syscall wrapper
FreeBSD Capsicum 100 Capsicum sandboxing using cap enter

Figure 12: Sandboxing mechanisms employed by Chromium.

5 Comparison of sandboxing technologies

We now compare Capsicum to existing sandbox mecha-
nisms. Chromium provides an ideal context for this com-
parison, as it employs six sandboxing technologies (see
Figure 12). Of these, the two are DAC-based, two MAC-
based and two capability-based.

5.1 Windows ACLs and SIDs

On Windows, Chromium uses DAC to create sand-
boxes [18]. The unsuitability of inter-user protections for
the intra-user context is demonstrated well: the model
is both incomplete and unwieldy. Chromium uses Ac-
cess Control Lists (ACLs) and Security Identifiers (SIDs)
to sandbox renderers on Windows. Chromium creates a
modified, reduced privilege, SID, which does not appear
in the ACL of any object in the system, in effect running
the renderer as an anonymous user.

However, objects which do not support ACLs are not
protected by the sandbox. In some cases, additional pre-
cautions can be used, such as an alternate, invisible desk-
top to protect the user’s GUI environment. However, un-
protected objects include FAT filesystems on USB sticks
and TCP/IP sockets: a sandbox cannot read user files di-
rectly, but it may be able to communicate with any server
on the Internet or use a configured VPN! USB sticks
present a significant concern, as they are frequently used
for file sharing, backup, and protection from malware.

Many legitimate system calls are also denied to the
sandboxed process. These calls are forwarded by the
sandbox to a trusted process responsible for filtering and
serving them. This forwarding comprises most of the
22,000 lines of code in the Windows sandbox module.

5.2 Linux chroot

Chromium’s suid sandbox on Linux also attempts to
create a privilege-free sandbox using legacy OS access
control; the result is similarly porous, with the additional
risk that OS privilege is required to create a sandbox.

In this model, access to the filesystem is limited to a
directory via chroot: the directory becomes the sand-

box’s virtual root directory. Access to other namespaces,
including System V shared memory (where the user’s
X window server can be contacted) and network access,
is unconstrained, and great care must be taken to avoid
leaking resources when entering the sandbox.

Furthermore, initiating chroot requires a setuid bi-
nary: a program that runs with full system privilege.
While comparable to Capsicum’s capability mode in
terms of intent, this model suffers significant sandboxing
weakness (for example, permitting full access to the Sys-
tem V shared memory as well as all operations on passed
file descriptors), and comes at the cost of an additional
setuid-root binary that runs with system privilege.

5.3 MAC OS X Seatbelt

On Mac OS X, Chromium uses a MAC-based framework
for creating sandboxes. This allows Chromium to create
a stronger sandbox than is possible with DAC, but the
rights that are granted to render processes are still very
broad, and security policy must be specified separately
from the code that relies on it.

The Mac OS X Seatbelt sandbox system allows pro-
cesses to be constrained according to a LISP-based pol-
icy language [1]. It uses the MAC Framework [27] to
check application activities; Chromium uses three poli-
cies for different components, allowing access to filesys-
tem elements such as font directories while restricting
access to the global namespace.

Like other techniques, resources are acquired before
constraints are imposed, so care must be taken to avoid
leaking resources into the sandbox. Fine-grained filesys-
tem constraints are possible, but other namespaces such
as POSIX shared memory, are an all-or-nothing affair.
The Seatbelt-based sandbox model is less verbose than
other approaches, but like all MAC systems, security pol-
icy must be expressed separately from code. This can
lead to inconsistencies and vulnerabilities.

5.4 SELinux

Chromium’s MAC approach on Linux uses an SELinux
Type Enforcement policy [12]. SELinux can be used

for very fine-grained rights assignment, but in practice,
broad rights are conferred because fine-grained Type En-
forcement policies are difficult to write and maintain.
The requirement that an administrator be involved in
defining new policy and applying new types to the file
system is a significant inflexibility: application policies
cannot adapt dynamically, as system privilege is required
to reformulate policy and relabel objects.

The Fedora reference policy for Chromium creates a
single SELinux dynamic domain, chrome sandbox t,
which is shared by all sandboxes, risking potential in-
terference between sandboxes. This domain is assigned
broad rights, such as the ability to read all files in /etc
and access to the terminal device. These broad policies
are easier to craft than fine-grained ones, reducing the
impact of the dual-coding problem, but are much less ef-
fective, allowing leakage between sandboxes and broad
access to resources outside of the sandbox.

In contrast, Capsicum eliminates dual-coding by com-
bining security policy with code in the application. This
approach has benefits and drawbacks: while bugs can’t
arise due to potential inconsistency between policy and
code, there is no longer an easily accessible specification
of policy to which static analysis can be applied. This
reinforces our belief that systems such as Type Enforce-
ment and Capsicum are potentially complementary, serv-
ing differing niches in system security.

5.5 Linux seccomp

Linux provides an optionally-compiled capability mode-
like facility called seccomp. Processes in seccomp
mode are denied access to all system calls except read,
write, and exit. At face value, this seems promis-
ing, but as OS infrastructure to support applications us-
ing seccomp is minimal, application writers must go to
significant effort to use it.

In order to allow other system calls, Chromium
constructs a process in which one thread executes in
seccomp mode, and another “trusted” thread sharing
the same address space has normal system call access.
Chromium rewrites glibc and other library system call
vectors to forward system calls to the trusted thread,
where they are filtered in order to prevent access to inap-
propriate shared memory objects, opening files for write,
etc. However, this default policy is, itself, quite weak, as
read of any file system object is permitted.

The Chromium seccomp sandbox contains over a
thousand lines of hand-crafted assembly to set up sand-
boxing, implement system call forwarding, and craft a
basic security policy. Such code is a risky proposition:
difficult to write and maintain, with any bugs likely lead-
ing to security vulnerabilities. The Capsicum approach
is similar to that of seccomp, but by offering a richer set

of services to sandboxes, as well as more granular dele-
gation via capabilities, it is easier to use correctly.

6 Performance evaluation

Typical operating system security benchmarking is tar-
geted at illustrating zero or near-zero overhead in the
hopes of selling general applicability of the resulting
technology. Our thrust is slightly different: we know
that application authors who have already begun to adopt
compartmentalisation are willing to accept significant
overheads for mixed security return. Our goal is there-
fore to accomplish comparable performance with signif-
icantly improved security.

We evaluate performance in two ways: first, a set
of micro-benchmarks establishing the overhead intro-
duced by Capsicum’s capability mode and capability
primitives. As we are unable to measure any notice-
able performance change in our adapted UNIX applica-
tions (tcpdump and dhclient) due to the extremely low
cost of entering capability mode from an existing pro-
cess, we then turn our attention to the performance of
our libcapsicum-enhanced gzip.

All performance measurements have been performed
on an 8-core Intel Xeon E5320 system running at
1.86GHz with 4GB of RAM, running either an unmod-
ified FreeBSD 8-STABLE distribution synchronised to
revision 201781 (2010-01-08) from the FreeBSD Sub-
version repository, or a synchronised 8-STABLE distri-
bution with our capability enhancements.

6.1 System call performance

First, we consider system call performance through
micro-benchmarking. Figure 13 summarises these re-
sults for various system calls on unmodified FreeBSD,
and related capability operations in Capsicum. Fig-
ure 14 contains a table of benchmark timings. All micro-
benchmarks were run by performing the target operation
in a tight loop over an interval of at least 10 seconds,
repeating for 10 iterations. Differences were computed
using Student’s t-test at 95% confidence.

Our first concern is with the performance of capabil-
ity creation, as compared to raw object creation and the
closest UNIX operation, dup. We observe moderate, but
expected, performance overheads for capability wrap-
ping of existing file descriptors: the cap new syscall is
50.7% ± 0.08% slower than dup, or 539 ± 0.8ns slower
in absolute terms.

Next, we consider the overhead of capability “un-
wrapping”, which occurs on every descriptor operation.
We compare the cost of some simple operations on raw
file descriptors, to the same operations on a capability-
wrapped version of the same file descriptor: writing a

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

du
p

ca
p_

ne
w

sh
m

fd
ca

p_
ne

w
_s

hm
fd

fs
ta

t_
sh

m
fd

fs
ta

t_
ca

p_
sh

m
fd

w
rit

e
ca

p_
w

rit
e

re
ad

_1
ca

p_
re

ad
_1

re
ad

_1
00

00
ca

p_
re

ad
_1

00
00

ge
tu

id
ch

ro
ot

se
tu

id
ca

p_
en

te
r

Ti
m

e/
sy

sc
al

l (
us

)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

fo
rk

vf
or

k

pd
fo

rk

fo
rk

_e
xe

c

vf
or

k_
ex

ec

pd
fo

rk
_e

xe
c

pi
ng

po
ng

sa
nd

bo
x

Ti
m

e/
sy

sc
al

l (
us

)

Figure 13: Capsicum system call performance compared to standard UNIX calls.

single byte to /dev/null, reading a single byte from
/dev/zero; reading 10000 bytes from /dev/zero; and
performing an fstat call on a shared memory file de-
scriptor. In all cases we observe a small overhead of
about 0.06µs when operating on the capability-wrapped
file descriptor. This has the largest relative performance
impact on fstat (since it does not perform I/O, simply
inspecting descriptor state, it should thus experience the
highest overhead of any system call which requires un-
wrapping). Even in this case the overhead is relatively
low: 10.2%± 0.5%.

6.2 Sandbox creation

Capsicum supports ways to create a sandbox: directly in-
voking cap enter to convert an existing process into a
sandbox, inheriting all current capability lists and mem-
ory contents, and the libcapsicum sandbox API, which
creates a new process with a flushed capability list.
cap enter performs similarly to chroot, used by

many existing compartmentalised applications to restrict
file system access. However, cap enter out-performs
setuid as it does not need to modify resource limits.
As most sandboxes chroot and set the UID, entering a
capability mode sandbox is roughly twice as fast as a tra-
ditional UNIX sandbox. This suggests that the overhead
of adding capability mode support to an application with
existing compartmentalisation will be negligible, and re-
placing existing sandboxing with cap enter may even
marginally improve performance.

Creating a new sandbox process and replacing its ad-
dress space using execve is an expensive operation.
Micro-benchmarks indicate that the cost of fork is three
orders of magnitude greater than manipulating the pro-
cess credential, and adding execve or even a single in-

stance of message passing increases that cost further.
We also found that additional dynamically linked li-
brary dependencies (libcapsicum and its dependency
on libsbuf) impose an additional 9% cost to the fork
syscall, presumably due to the additional virtual mem-
ory mappings being copied to the child process. This
overhead is not present on vfork which we plan to use
in libcapsicum in the future. Creating, exchanging an
RPC with, and destroying a single sandbox (the “sand-
box” label in Figure 13(b)) has a cost of about 1.5ms,
significantly higher than its subset components.

6.3 gzip performance

While the performance cost of cap enter is negli-
gible compared to other activity, the cost of multi-
process sandbox creation (already taken by dhclient
and Chromium due to existing sandboxing) is significant.

To measure the cost of process sandbox creation, we
timed gzip compressing files of various sizes. Since the
additional overheads of sandbox creation are purely at
startup, we expect to see a constant-time overhead to the
capability-enhanced version of gzip, with identical lin-
ear scaling of compression performance with input file
size. Files were pre-generated on a memory disk by read-
ing a constant-entropy data source: /dev/zero for per-
fectly compressible data, /dev/random for perfectly in-
compressible data, and base 64-encoded /dev/random
for a moderate high entropy data source, with about 24%
compression after gzipping. Using a data source with ap-
proximately constant entropy per bit minimises variation
in overall gzip performance due to changes in compres-
sor performance as files of different sizes are sampled.
The list of files was piped to xargs -n 1 gzip -c
> /dev/null, which sequentially invokes a new gzip

Benchmark Time/operation Difference % difference

dup 1.061± 0.000µs - -
cap new 1.600± 0.001µs 0.539± 0.001µs 50.7%± 0.08%
shmfd 2.385± 0.000µs - -
cap new shmfd 4.159± 0.007µs 1.77± 0.004µs 74.4%± 0.181%
fstat shmfd 0.532± 0.001µs - -
fstat cap shmfd 0.586± 0.004µs 0.054± 0.003µs 10.2%± 0.506%
read 1 0.640± 0.000µs - -
cap read 1 0.697± 0.001µs 0.057± 0.001µs 8.93%± 0.143%
read 10000 1.534± 0.000µs - -
cap read 10000 1.601± 0.003µs 0.067± 0.002µs 4.40%± 0.139%
write 0.576± 0.000µs - -
cap write 0.634± 0.002µs 0.058± 0.001µs 10.0%± 0.241%
cap enter 1.220± 0.000µs - -
getuid 0.353± 0.001µs −0.867± 0.001µs −71.0%± 0.067%
chroot 1.214± 0.000µs −0.006± 0.000µs −0.458%± 0.023%
setuid 1.390± 0.001µs 0.170± 0.001µs 14.0%± 0.054%
fork 268.934± 0.319µs - -
vfork 44.548± 0.067µs −224.3± 0.217µs −83.4%± 0.081%
pdfork 259.359± 0.118µs −9.58± 0.324µs −3.56%± 0.120%
pingpong 309.387± 1.588µs 40.5± 1.08µs 15.0%± 0.400%
fork exec 811.993± 2.849µs - -
vfork exec 585.830± 1.635µs −226.2± 2.183µs −27.9%± 0.269%
pdfork exec 862.823± 0.554µs 50.8± 2.83µs 6.26%± 0.348%
sandbox 1509.258± 3.016µs 697.3± 2.78µs 85.9%± 0.339%

Figure 14: Micro-benchmark results for various system calls and functions, grouped by category.

compression process with a single file argument, and dis-
cards the compressed output. Sufficiently many input
files were generated to provide at least 10 seconds of re-
peated gzip invocations, and the overall run-time mea-
sured. I/O overhead was minimised by staging files on
a memory disk. The use of xargs to repeatedly invoke
gzip provides a tight loop that minimising the time be-
tween xargs’ successive vfork and exec calls of gzip.
Each measurement was repeated 5 times and averaged.

Benchmarking gzip shows high initial overhead,
when compressing single-byte files, but also that the ap-
proach in which file descriptors are wrapped in capabil-
ities and delegated rather than using pure message pass-
ing, leads to asymptotically identical behaviour as file
size increases and run-time cost are dominated by com-
pression workload, which is unaffected by Capsicum.
We find that the overhead of launching a sandboxed gzip
is 2.37 ± 0.01 ms, independent of the type of compres-
sion stream. For many workloads, this one-off perfor-
mance cost is negligible, or can be amortised by passing
multiple files to the same gzip invocation.

7 Future work

Capsicum provides an effective platform for capability
work on UNIX platforms. However, further research and

development are required to bring this project to fruition.
We believe further refinement of the Capsicum prim-

itives would be useful. Performance could be improved
for sandbox creation, perhaps employing an Capsicum-
centric version of the S-thread primitive proposed by Bit-
tau. Further, a “logical application” OS construct might

 0.001

 0.01

 0.1

 1

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B 1K 2K 4K 8k

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

Ti
m

e/
gz

ip
 in

vo
ca

tio
n

(s
ec

)

File size

Capabilities gzip
Standard gzip

Figure 15: Run time per gzip invocation against random
data, with varying file sizes; performance of the two ver-
sions come within 5% of one another at around a 512K.

improve termination properties.
Another area for research is in integrating user in-

terfaces and OS security; Shapiro has proposed that
capability-centered window systems are a natural ex-
tension to capability operating systems. Improving the
mapping of application security constructs into OS sand-
boxes would also significantly improve the security of
Chromium, which currently does not consistently assign
web security domains to sandboxes. It is in the con-
text of windowing systems that we have found capability
delegation most valuable: by driving delegation with UI
behaviors, such as Powerboxes (file dialogues running
with ambient authority) and drag-and-drop, Capsicum
can support gesture-based access control research.

Finally, it is clear that the single largest problem
with Capsicum and other privilege separation approaches
is programmability: converting local development into
de facto distributed development adds significant com-
plexity to code authoring, debugging, and maintenance.
Likewise, aligning security separation with application
separation is a key challenge: how does the programmer
identify and implement compartmentalisations that offer
real security benefits, and determine that they’ve done
so correctly? Further research in these areas is critical
if systems such as Capsicum are to be used to mitigate
security vulnerabilities through process-based compart-
mentalisation on a large scale.

8 Related work

In 1975, Saltzer and Schroeder documented a vocabulary
for operating system security based on on-going work
on MULTICS [19]. They described the concepts of ca-
pabilities and access control lists, and observed that in
practice, systems combine the two approaches in order
to offer a blend of control and performance. Thirty-five
years of research have explored these and other security
concepts, but the themes remain topical.

8.1 Discretionary and Mandatory Access

Control

The principle of discretionary access control (DAC) is
that users control protections on objects they own. While
DAC remains relevant in multi-user server environments,
the advent of personal computers and mobile phones has
revealed its weakness: on a single-user computer, all
eggs are in one basket. Section 5.1 demonstrates the dif-
ficulty of using DAC for malicious code containment.

Mandatory access control systemically enforce poli-
cies representing the interests of system implementers
and administrators. Information flow policies tag sub-
jects and objects in the system with confidentiality
and integrity labels—fixed rules prevent reads or writes

that allowing information leakage. Multi-Level Secu-
rity (MLS), formalised as Bell-LaPadula (BLP), protects
confidential information from unauthorised release [3].
MLS’s logical dual, the Biba integrity policy, imple-
ments a similar scheme protecting integrity, and can be
used to protect Trusted Computing Bases (TCBs) [4].

MAC policies are robust against the problem of con-

fused deputies, authorised individuals or processes who
can be tricked into revealing confidential information. In
practice, however, these policies are highly inflexible, re-
quiring administrative intervention to change, which pre-
cludes browsers creating isolated and ephemeral sand-
boxes “on demand” for each web site that is visited.

Type Enforcement (TE) in LOCK [20] and, later,
SELinux [12] and SEBSD [25], offers greater flexibil-
ity by allowing arbitrary labels to be assigned to sub-
jects (domains) and objects (types), and a set of rules
to control their interactions. As demonstrated in Sec-
tion 5.4, requiring administrative intervention and the
lack of a facility for ephemeral sandboxes limits appli-
cability for applications such as Chromium: policy, by
design, cannot be modified by users or software authors.
Extreme granularity of control is under-exploited, or per-
haps even discourages, highly granular protection—for
example, the Chromium SELinux policy conflates dif-
ferent sandboxes allowing undesirable interference.

8.2 Capability systems, micro-kernels, and

compartmentalisation

The development of capability systems has been tied to
mandatory access control since conception, as capabil-
ities were considered the primitive of choice for media-
tion in trusted systems. Neumann et al’s Provably Secure
Operating System (PSOS) [16], and successor LOCK,
propose a tight integration of the two models, with the
later refinement that MAC allows revocation of capabili-
ties in order to enforce the *-property [20].

Despite experimental hardware such as Wilkes’ CAP
computer [28], the eventual dominance of general-
purpose virtual memory as the nearest approximation
of hardware capabilities lead to exploration of object-
capability systems and micro-kernel design. Systems
such as Mach [2], and later L4 [11], epitomise this ap-
proach, exploring successively greater extraction of his-
toric kernel components into separate tasks. Trusted
operating system research built on this trend through
projects blending mandatory access control with micro-
kernels, such as Trusted Mach [6], DTMach [22] and
FLASK [24]. Micro-kernels have, however, been largely
rejected by commodity OS vendors in favour of higher-
performance monolithic kernels.

MAC has spread, without the benefits of micro-kernel-
enforced reference monitors, to commodity UNIX sys-

tems in the form of SELinux [12]. Operating system ca-
pabilities, another key security element to micro-kernel
systems, have not seen wide deployment; however, re-
search has continued in the form of EROS [23] (now
CapROS), inspired by KEYKOS [9].

OpenSSH privilege separation [17] and Privman [10]
rekindled interest in micro-kernel-like compartmentali-
sation projects, such as the Chromium web browser [18]
and Capsicum’s logical applications. In fact, large ap-
plication suites compare formidably with the size and
complexity of monolithic kernels: the FreeBSD kernel is
composed of 3.8 million lines of C, whereas Chromium
and WebKit come to a total of 4.1 million lines of
C++. How best to decompose monolithic applications re-
mains an open research question; Bittau’s Wedge offers a
promising avenue of research in automated identification
of software boundaries through dynamic analysis [5].

Seaborn and Hand have explored application com-
partmentalisation on UNIX through capability-centric
Plash [21], and Xen [15], respectively. Plash offers an
intriguing blend of UNIX semantics with capability se-
curity by providing POSIX APIs over capabilities, but
is forced to rely on the same weak UNIX primitives
analysed in Section 5. Supporting Plash on stronger
Capsicum foundations would offer greater application
compatibility to Capsicum users. Hand’s approach suf-
fers from similar issues to seccomp, in that the run-
time environment for sandboxes is functionality-poor.
Garfinkel’s Ostia [7] also considers a delegation-centric
approach, but focuses on providing sandboxing as an ex-
tension, rather than a core OS facility.

A final branch of capability-centric research is capa-
bility programming languages. Java and the JVM have
offered a vision of capability-oriented programming: a
language run-time in which references and byte code ver-
ification don’t just provide implementation hiding, but
also allow application structure to be mapped directly to
protection policies [8]. More specific capability-oriented
efforts are E [13], the foundation for Capdesk and the
DARPA Browser [26], and Caja, a capability subset of
the JavaScript language [14].

9 Conclusion

We have described Capsicum, a practical capabilities ex-
tension to the POSIX API, and a prototype based on
FreeBSD, planned for inclusion in FreeBSD 9.0. Our
goal has been to address the needs of application au-
thors who are already experimenting with sandboxing,
but find themselves building on sand when it comes to
effective containment techniques. We have discussed
our design choices, contrasting approaches from research
capability systems, as well as commodity access con-
trol and sandboxing technologies, but ultimately leading

to a new approach. Capsicum lends itself to adoption
by blending immediate security improvements to cur-
rent applications with the long-term prospects of a more
capability-oriented future. We illustrate this through
adaptations of widely-used applications, from the sim-
ple gzip to Google’s highly-complex Chromium web
browser, showing how firm OS foundations make the job
of application writers easier. Finally, security and perfor-
mance analyses show that improved security is not with-
out cost, but that the point we have selected on a spec-
trum of possible designs improves on the state of the art.

10 Acknowledgments

The authors wish to gratefully acknowledge our spon-
sors, including Google, Inc, the Rothermere Founda-
tion, and the Natural Sciences and Engineering Research
Council of Canada. We would further like to thank Mark
Seaborn, Andrew Moore, Joseph Bonneau, Saar Drimer,
Bjoern Zeeb, Andrew Lewis, Heradon Douglas, Steve
Bellovin, and our anonymous reviewers for helpful feed-
back on our APIs, prototype, and paper, and Sprewell for
his contributions to the Chromium FreeBSD port.

11 Availability

Capsicum, as well as our extensions to the Chromium
web browser are available under a BSD license; more
information may be found at:

http://www.cl.cam.ac.uk/research/security/capsicum/

A technical report with additional details is forthcoming.

References

[1] The Chromium Project: Design Documents: OS X
Sandboxing Design. http://dev.chromium.org/
developers/design-documents/sandbox/
osx-sandboxing-design.

[2] ACETTA, M. J., BARON, R., BOLOWSKY, W., GOLUB, D.,
RASHID, R., TEVANIAN, A., AND YOUNG, M. Mach: a new
kernel foundation for unix development. In Proceedings of the

USENIX 1986 Summer Conference (July 1986), pp. 93–112.

[3] BELL, D. E., AND LAPADULA, L. J. Secure computer systems:
Mathematical foundations. Tech. Rep. 2547, MITRE Corp.,
March 1973.

[4] BIBA, K. J. Integrity considerations for secure computer sys-
tems. Tech. rep., MITRE Corp., April 1977.

[5] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND KARP, B.
Wedge: Splitting Applications into Reduced-Privilege Compart-
ments. In Proceedings of the 5th USENIX Symposium on Net-

worked Systems Design and Implementation (2008), pp. 309–
322.

[6] BRANSTAD, M., AND LANDAUER, J. Assurance for the Trusted
Mach operating system. Computer Assurance, 1989. COMPASS

’89, ’Systems Integrity, Software Safety and Process Security’,

Proceedings of the Fourth Annual Conference on (1989), 103–
108.

[7] GARFINKEL, T., PFA, B., AND ROSENBLUM, M. Ostia: A del-
egating architecture for secure system call interposition. In Proc.

Internet Society 2003 (2003).

[8] GONG, L., MUELLER, M., PRAFULLCHANDRA, H., AND
SCHEMERS, R. Going Beyond the Sandbox: An Overview of
the New Security Architecture in the Java Development Kit 1.2.
In Proceedings of the USENIX Symposium on Internet Technolo-

gies and Systems.

[9] HARDY, N. KeyKOS architecture. SIGOPS Operating Systems

Review 19, 4 (Oct 1985).

[10] KILPATRICK, D. Privman: A Library for Partitioning Applica-
tions. In Proceedings of USENIX Annual Technical Conference

(2003), pp. 273–284.

[11] LIEDTKE, J. On microkernel construction. In Proceedings of the

15th ACM Symposium on Operating System Principles (SOSP-

15) (Copper Mountain Resort, CO, Dec. 1995).

[12] LOSCOCCO, P., AND SMALLEY, S. Integrating flexible support
for security policies into the Linux operating system. Proceedings

of the FREENIX Track: 2001 USENIX Annual Technical Confer-

ence table of contents (2001), 29–42.

[13] MILLER, M. S. The e language. http://www.erights.
org/.

[14] MILLER, M. S., SAMUEL, M., LAURIE, B., AWAD, I., AND
STAY, M. Caja: Safe active content in sanitized javascript,
May 2008. http://google-caja.googlecode.com/
files/caja-spec-2008-06-07.pdf.

[15] MURRAY, D. G., AND HAND, S. Privilege Separation Made
Easy. In Proceedings of the ACM SIGOPS European Workshop

on System Security (EUROSEC) (2008), pp. 40–46.

[16] NEUMANN, P. G., BOYER, R. S., GEIERTAG, R. J., LEVITT,
K. N., AND ROBINSON, L. A provably secure operating system:
The system, its applications, and proofs, second edition. Tech.
Rep. Report CSL-116, Computer Science Laboratory, SRI Inter-
national, May 1980.

[17] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing
Privilege Escalation. In Proceedings of the 12th USENIX Security

Symposium (2003).

[18] REIS, C., AND GRIBBLE, S. D. Isolating web programs in mod-
ern browser architectures. In EuroSys ’09: Proceedings of the

4th ACM European conference on Computer systems (New York,
NY, USA, 2009), ACM, pp. 219–232.

[19] SALTZER, J. H., AND SCHROEDER, M. D. The protection of in-
formation in computer systems. In Communications of the ACM

(July 1974), vol. 17.

[20] SAMI SAYDJARI, O. Lock: an historical perspective. In Pro-

ceeedings of the 18th Annual Computer Security Applications

Conference (2002), IEEE Computer Society.

[21] SEABORN, M. Plash: tools for practical least privilege, 2010.
http://plash.beasts.org/.

[22] SEBES, E. J. Overview of the architecture of Distributed Trusted
Mach. Proceedings of the USENIX Mach Symposium: November

(1991), 20–22.

[23] SHAPIRO, J., SMITH, J., AND FARBER, D. EROS: a fast capa-
bility system. SOSP ’99: Proceedings of the seventeenth ACM

symposium on Operating systems principles (Dec 1999).

[24] SPENCER, R., SMALLEY, S., LOSCOCCO, P., HIBLER, M.,
ANDERSON, D., AND LEPREAU, J. The Flask Security Archi-
tecture: System Support for Diverse Security Policies. In Proc.

8th USENIX Security Symposium (August 1999).

[25] VANCE, C., AND WATSON, R. Security Enhanced BSD. Net-

work Associates Laboratories (2003).

[26] WAGNER, D., AND TRIBBLE, D. A security analysis
of the combex darpabrowser architecture, March 2002.
http://www.combex.com/papers/darpa-review/
security-review.pdf.

[27] WATSON, R., FELDMAN, B., MIGUS, A., AND VANCE, C. De-
sign and Implementation of the TrustedBSD MAC Framework.
In Proc. Third DARPA Information Survivability Conference and

Exhibition (DISCEX), IEEE (April 2003).

[28] WILKES, M. V., AND NEEDHAM, R. M. The Cambridge CAP

computer and its operating system (Operating and programming

systems series). Elsevier North-Holland, Inc., Amsterdam, The
Netherlands, 1979.

