Assignment \#6

1) Module inth 10,000 hollur fibers

Internal Diomater, ID $=0.9 \mathrm{~mm}=0.0009 \mathrm{~m}$

$$
\text { hengh } L=1.2 \mathrm{~m}
$$

Cross fleur veloint $V_{x}=1.0 \mathrm{~m} / \mathrm{s}$
a) Find feed flur SF in $m^{3} /$ day

Consider $A \perp$ to bngth of hollour fiber $\stackrel{\text { QF }}{\rightarrow} Q$

$$
\begin{aligned}
Q_{F} & =V_{x} A_{1}=V_{x} \pi r^{2} \quad Q_{F}=V A=V \\
& =\frac{1.0 \mathrm{~m}}{\mathrm{~s}} \times \pi(0.00045 \mathrm{~m})^{2} \times 3600 \frac{\mathrm{~s}}{\mathrm{~h}} \times \frac{24 \mathrm{~h}}{\text { day }} \times 10,000 \frac{\text { hollow fi6ers }}{\text { molele }} \\
& =\frac{549.7 \mathrm{~m}^{3} / \text { day }}{}
\end{aligned}
$$

b) Find permeat glar rate $Q_{p_{\Lambda}}\left(i \mathrm{~m}^{3}\right.$ acvoss membrure if pormeate

$$
\text { Slux, } J=\frac{70 L}{m^{2} \cdot h}
$$

Area through menbrare along

$$
Q_{p}=J A=\frac{70 L}{m^{2} \cdot h} \times \pi d \text { length }
$$

$$
=\frac{70 \mathrm{~L}}{m^{2} \cdot h} \times \pi(0.0009 \mathrm{~m})(1.2 \mathrm{~m}) \times \frac{\mathrm{Im}^{3}}{1000 \mathrm{~L}} \times \frac{24 \mathrm{~h}}{\mathrm{day}} \times 10,000 \frac{\text { hollor fibers }}{\text { modude }}
$$

$$
\begin{equation*}
=57 \mathrm{~m}^{3} / \mathrm{day} \tag{2}
\end{equation*}
$$

c) $Q_{F}-Q_{P}=B y$ paso water $=549.7-57=492.7 \mathrm{~m}^{3} /$ day.

$$
\begin{align*}
V_{\text {by-pas water }}=\frac{Q}{A_{+}} & =\frac{492.7 \mathrm{~m}^{3}}{\operatorname{dag} \pi(0.00045 \mathrm{~m})^{2}} \times \frac{\mathrm{day}}{24 h^{2}} \times \frac{h}{36005} \frac{\text { mochlele }}{10,000 \mathrm{Rf} .} \\
& =0.896 \mathrm{~m} / \mathrm{h} \tag{2}
\end{align*}
$$

2)

$$
\begin{align*}
& J=50 \mathrm{~L} / \mathrm{m}^{2} \cdot h \\
& T=10 \mathrm{C} \\
& \Delta P=0.65 \mathrm{bar} \\
& \begin{array}{lll}
0^{0} & 1.781 \\
5^{0} & 1.518 & 0.263 / 5=0.0526 \quad 1.728 \mu e 1^{2} .
\end{array} \\
& \text { a) } I_{s}=\operatorname{Jm}\left(\frac{\mu_{m}}{\mu_{s}}\right)=\frac{50 \mathrm{~L}}{m^{2} \cdot \mathrm{~h}}\left(\frac{1.728 \times 10^{-3} \mathrm{~N} \cdot 5 / \mathrm{m}^{2}}{1.002 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}}\right)=86.25 \frac{\mathrm{~L}}{\mathrm{~m}^{2} \cdot \mathrm{~h}} \\
& I_{S P}, 20^{\circ} \mathrm{C}=\frac{J_{s}}{\Delta P}=\frac{86.25 \mathrm{~L}}{m^{2} \cdot h \times 0.65 \mathrm{bar}}=132.7 \frac{\mathrm{~L}}{\mathrm{~m}^{2} \cdot h \cdot 6 a r} \tag{2}
\end{align*}
$$

b)

$$
\begin{align*}
I_{s} & =I_{m}(1.03)^{T_{s}-T_{m}} \\
& =50 \frac{L}{m^{2} \cdot h}(1.03)^{20-1}=87.67 \frac{\mathrm{~L}}{\mathrm{~m}^{2} \cdot h} \tag{A}
\end{align*}
$$

c) error in using tho empiried equation:

$$
\frac{87.67-86.25}{86.25 q}=1.65 q \text { remora. }^{2} q
$$

value from part (a) is in the denominator
d) Find km at $20^{\circ} \mathrm{C}$:

$$
\begin{aligned}
& J=\frac{\Delta P}{\mu K_{m}} ; \quad K_{m}=\frac{\Delta P}{J_{s} \mu}
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{1000 L}{m^{3}} \\
& =2.71 \times 10^{12} \mathrm{~m}^{-1}
\end{aligned}
$$

3)

$$
\begin{aligned}
\text { Qsummer } & =190,000 \mathrm{~m}^{3} / \mathrm{d} \\
\text { Qwinter } & =136,000 \mathrm{~m}^{3} / \mathrm{d} \\
T \text { summor } & =17^{\circ} \mathrm{C} \\
T \text { winter } & =1{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$J=\frac{65 L}{m^{2} \cdot R}$ in pummer.
a)

$$
\begin{aligned}
& Q=J A \\
& A=\frac{Q}{J}=\frac{190,000 \mathrm{~m}^{3} / d}{65 \mathrm{~L} / \mathrm{m}^{2} \cdot h} \times \frac{1000 \mathrm{~L}}{\mathrm{~m}^{3}} \times \frac{d}{24 h}=121,795 \mathrm{~m}^{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& J_{s}=J_{m}(1.03)^{T_{s}-T_{m}}=\frac{65 \mathrm{~L}}{\mathrm{~m}^{2} \cdot h}(1.03)^{20-17}=71.03 \frac{\mathrm{~L}}{\mathrm{~m}^{2} \cdot h} \\
& I_{m}=\frac{J_{s}}{(1.03)} T_{s}-T_{m}=\frac{71.03 \mathrm{~L} / \mathrm{m}^{2} \cdot h}{(1.03)^{20-1}}=40.51 \frac{\mathrm{~L}}{\mathrm{~m}^{2} \cdot h} \\
& Q=J A=40.51 \frac{\mathrm{~L}}{m^{2} \cdot h}\left(121.795 \mathrm{~m}^{2}\right) \frac{\mathrm{m}^{3}}{1000 \mathrm{~L}} \frac{24 h}{\mathrm{~d}}=118.413 \frac{\mathrm{~m}^{3}}{\mathrm{~d}}
\end{aligned}
$$

Tranomembrane prosece will neat to le incraned to achive the requied wintor peate-day demard.
(4)
\# $D=5790 \mathrm{~mm} ; \quad S=0.0001 ; \quad A / A f=0.70$
a) From Fig. $16-4: \quad r_{f}=0.9 \mathrm{~m} / \mathrm{s}$ and $Q_{f}=1525 \mathrm{~m}^{3} / \mathrm{mis}$
$A / A_{f}=0.7$ so from partied floor diagram:

$$
\begin{align*}
& y / R=1.3 \text { oR } d / D=0.65 \tag{0.5}\\
& d=0.65(5790)=3764 \mathrm{~mm} .
\end{align*}
$$

b) Given that $d / D=0.65$ form partial flue diagram:

$$
\text { Q/gf }=0.625 ; Q=0.625\left(1525 \mathrm{~m}^{3} / \mathrm{min}\right)=953 \mathrm{~m}^{3} / \mathrm{min}
$$

c) Given that $d / D=0.65$ from partial flour diagram:

$$
v / v_{f}=0.915 ; \quad V=0.915(0.9 \mathrm{~m} / \mathrm{s})=0.824 \mathrm{~m} / \mathrm{s}
$$

5) $A=23 \mathrm{ha}$, pop. density $=95$ persons $/$ hectare.
(3) Aug. trícutang pop. $=23 \times 95=2,85$

Capacity factor $C=5 \times 23^{-0.2}=2.67$
probate mae pop. $=2185 \times 2.67=$
probate mae. pop. $=2185 \times 267=5,835$
Aug. per capita gear rat $=275 \mathrm{~L} /$ person/ day

$$
\begin{aligned}
\text { Avg. Sewage four } & =5835 \text { persons } \times 275 \frac{\mathrm{~L}}{}{ }^{\text {person dag }} \times \frac{1 \text { day }}{86400 \mathrm{~s}} \\
& =18.57 \mathrm{~L} / \mathrm{s} .
\end{aligned}
$$

$$
\begin{equation*}
P_{f}=1+\frac{14}{4+\sqrt{5.835}}=3.182 \tag{0.5}
\end{equation*}
$$

Peak pewrogs foot $=3.182 \times 18.57 \mathrm{~L} / \mathrm{s}=59.1 \mathrm{~L} / \mathrm{s}$.
Infiltration allarana $=22,500 \mathrm{Lhald} \times 23 \mathrm{ha} \times \frac{\mathrm{Ld}}{86,400 \mathrm{~S}}=5.99 \frac{\mathrm{~L}}{\mathrm{~s}}$
Avg. dy weather flour =

$$
\begin{align*}
& 5.99+18.57=\frac{24.56}{} \mathrm{~L} / \mathrm{s} \\
& \text { PDWF }=5.99 \mathrm{~L} / \mathrm{s}+59.1 \mathrm{~L} / \mathrm{s}=65.1 \mathrm{~L} / \mathrm{s}
\end{align*}
$$

6 hight metustinal 11 ha.
\rightarrow 39,000 l/hal d
avg. flow $=39,000 \mathrm{Lhald} \times 11 \mathrm{ha}=429,000 \mathrm{~L} / \mathrm{d}$
(3). avg. por capita flar $=275 \mathrm{~L} /$ pasou/day.
equivalant pup. $=429,000 \div 275=1560$ people

$$
\text { arg. Hear }=429,050 \frac{1}{d} \times \frac{1 d}{86,400 \mathrm{~s}}=4.965 \mathrm{~L} / \mathrm{s}
$$

If for non-rosidential:

$$
0.8\left(1+\frac{14}{4+\sqrt{1.560}}\right)=2.93
$$

peak flur $=2.93 \times 4.965=14.55 \mathrm{~L} / \mathrm{s}$
0.25
infiltration allantance rat $=22,500 \mathrm{H} / \mathrm{hald}$
infiltration allarsance $=22,500^{\frac{2}{a_{a}^{d}}} \times 11 \frac{R_{a}}{a 6} \times \frac{1 \mathrm{~d}}{86,400 \mathrm{~s}}=2,86 \frac{\mathrm{~L}}{\mathrm{~L}} \frac{1.8}{5}$
arg. dny weathr glar $=2.86+4.96=7.824 / 50.25$

$$
\begin{equation*}
\text { PDWF }=14.55+2.86=17.41 \mathrm{~L} / \mathrm{s} \tag{0,5}
\end{equation*}
$$

7. As an eivoting dewelopmeat: $A=23 \mathrm{ha}$, Bp. deusity $=95$ pensms
(3) Doign pop. $=23 \times 95=2185=2185$ (6.25
avg. Sear rate $=275 \mathrm{~L} / \mathrm{c} / \mathrm{d}$
avg. Pewage flar $=2185 \times 275 \times \frac{1}{86,400}=6.95 \frac{\mathrm{~L}}{5}$.

$$
P f=1+\frac{14}{4+\sqrt{2.185}}=3.56
$$

Peak pewty flar $3.56 \times 6.95=24.7 \frac{4}{5} 0.25$
Onfiltration allowance rate $=20,500 \mathrm{~L}$ Hald
Infiltration allarares $=22,500 \times 23 \times \frac{1}{86,400}=5.99 \mathrm{~L}$
PDWF $=24.7+5.99=30.69 \mathrm{~L} / \mathrm{S} 0.25$

ML Gwadelime: $\quad Q_{P D}=\frac{G \times P \times P f}{86.4}$

$$
\begin{equation*}
\text { QPDW }=\frac{340^{4 / c l d} \times 2.185 \times 3.56}{86.4}=30.6 \mathrm{~L} / \mathrm{s} \tag{1}
\end{equation*}
$$

26) anthracte $D=1.5 \mathrm{~m}, \varepsilon=0.5, d=1.1 \mathrm{~mm} \phi=0.73$
sand $D=0.3 \mathrm{~m}, \varepsilon=0.4, d=0.6 \mathrm{~mm} \phi=0.82$

$$
\begin{array}{cc}
V_{a}=15 \mathrm{~m} / \mathrm{h}=0.25 \mathrm{~m} / \mathrm{min}=0.00417 \mathrm{~m} / \mathrm{s} \\
T=150 & D=1.156 \times 10-6 \mathrm{~m}^{2} / \mathrm{s}
\end{array}
$$

For anthracite: $\quad \operatorname{Re}=\frac{\phi d V_{a}}{\nu}=\frac{(0.73)(0.0011)(0.00417 \mathrm{~m} / \mathrm{s})}{1.156 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}=2.90$

$$
\left.\left.\begin{array}{rl}
C d & =\frac{\partial 4}{R e}+\frac{3}{\sqrt{R e}}+0.34=\frac{24}{2.9}+\frac{3}{\sqrt{2.9}}+0.34
\end{array}\right)=8.28+1.76+0.34\right] \quad=10.38 .
$$

For sand: $\quad \operatorname{Re}=\frac{\phi d V_{a}}{2}=\frac{0.82 \times 0.0006 \mathrm{~m} \times 0.00417 \mathrm{~m} / \mathrm{s}}{1.156 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}=1.77$

$$
\begin{aligned}
& \begin{array}{r}
C d=\frac{24}{\operatorname{Re}}+\frac{3}{\sqrt{R e}}+0.34=\frac{24}{1.77}+\frac{3}{\sqrt{1.77}}+0.34=13.56+2.25+0.34 \\
=16.15
\end{array} \\
& h_{L}=\frac{1.067}{\phi} \frac{C_{D}}{g} D \frac{V_{a}^{2}}{\varepsilon^{4}} \frac{1}{d}=\frac{1.067}{0.82} \times \frac{16.15}{9.81 \mathrm{~m} / \mathrm{s}^{2}} \frac{(0.00417 \mathrm{~m} / \mathrm{s})^{2}}{0.4^{4}} \frac{0.3}{0.0006}=0.728 \mathrm{~m} \\
& \text { Total } h_{L}=0.586+0.728=1.314 \mathrm{~m} \text {. }
\end{aligned}
$$

3) For 0.6 mm sard an aquivant size of centhracte is: $d_{1}=0.6\left(\frac{2.6-1}{1.5-1}\right)^{2 / 3}=1.30 \therefore$ The anthracite settles below r the $\quad \begin{array}{r}\text { pand after backuesshing. }\end{array}$
