
Assignment #6

) Modulo iste 10,000 tollar fibers
Internal Direction, ID = 0.9 mm = 0.0009 m
hongh L = 1.2 m
Coss flar veloit, Vx = 1.0 m/s
a) Fiel feed flar GF in m?/deg
Consider A I to buste of Follow fiber
$$\frac{9}{7}$$

 $G_F = V_x A_1 = V_x \pi r^2 G_F = VA = V$
= 1.0 m x TT (0.00045m)² x 3600 5 x 2448 x 10,000 follow fibers
= 549.7 m?/dag.
b) Find permet glas roles G_F across memberers is pormethe
 $glar, J = 70L$ $m^2 g$
 $G_F = 3A = 70L x TT d longte
 $m^3 g$
 $= 57 m^3/dag$
b) $G_F = G_F = B_0 prose wete = 549.7 - 57 = 492.7 m^3/dag.$
 $G_F = G_F = B_0 prose wete = 549.7 - 57 = 492.7 m^3/dag.$
 $M_{00} pros wete = Q = 492.7 m^3 x dag x dag x dag x dag get
 $= 0.896 m/g$$$

(2)	ummer = Jinter =	136,000	mid			
	T summer T winter	= 170	с с			
	$5 = 65L$ $m^{2}.6$					
a) Q = :						
A= 0 J	= <u>190,000</u> 65 L	$m^{3/4} \times (m^{2} \cdot h)$	(000 L × m3	2 - 248	= (2),795	5 m ²
b) Js	= Jm (1.0	3) TS - TM	= 65 L (1 m ² .R	.03)20-17	= 71.03	<u>L</u> n ² . R.
Jm	= <u>]</u> s (1.03)	= <u>-</u> Ts-Tm	11.03 L/m². (1.03)20-1	<u> </u>	40.51 L m	P. L
g = :	JA = 40.5	51 L (17 m ² .R	21,795m2) m ³ 2 1000 L	<u>248 = 118</u> d	3,413 <u>m³</u>
Tranc	imembrane zoe the	prosece i	ull need	to Ge k. Jay	incranal Demard.	to 🕑

D = 5790 mm. 5 = 0.0001; A/Ag = 0.70 From Fig. 16-4: Vf = 0.9 m/s and gf = 1525 m3/min. q) A/AF = 0.7 so from partial flour diagram: y/R = 1.3 or d/D = 0.650.5 d = 0.65(5790) = 3764 mm.0.5 b) Given that d/D = 0.65 from partial flur diagram. 8/8f = 0.625; $g = 0.625(1525 \text{ m}^3/\text{min}) = 953 \text{ m}^3/\text{min}$ Given that d/D = 0.65 from partial Flow dizvam: c) V/Vg = 0.915; V = 0.915(0.9 m/s) = 0.824 m/s. A = 23 ha, pop. density = 95 persons/hectare. 5) 3 Aug. tributan pop. = $23 \times 95 = 2185$ Capacity factor C = $5 \times 23^{-0.2} = 2.67$ probable map. pop. = $2185 \times 2.67 = 5835$ 6.25 (0.25) (0.29 Aug. per capita' gloss rate = 275 L/person / day 0; Aug. Dewage Stows = 5835 persono × 275 L × 1 day person day 86400 S 0.51 = 18,57 L/s.= 3.182Pf = 1 + 144 + 5.8350.3 Peak powers flow = 3.182 × 10.57 -12 Ingiltration allavana = 22,500 4/Rald × 23 Ra × Ld = 5.99 L 86,4005 02 Peak peusego flow = 3.182 × 18.57 4/5 = 59.1 4/5. Aug. dy weather flow = = 86,4005 5.99 + 18.57 = <u>24.56</u> 4/5 075 PDWF = 5.99 1/5 + 59.1 1/5 = 65.1 4/5

hight inclustrial 11 ha. 4 39,000 L/Rald avg. por = 39,000 L/Ra(d × 11 Ra = 429,000 L/d (5) avg. por capita Shur = 225 L/pasa /day. ajuivalent p.p. = 429,000 ÷ 275 = 1560 parto 625 3 aug. flar = 429,000 4 x 12 = 4.965 4/5 6.5 $\begin{array}{r} P_{\text{f}} \text{ for non-people which}:\\ 0.8\left(1+\frac{14}{4+\sqrt{1.560}}\right) = 2.93 \end{array}$ (0.5) pack Sturs = 2.93 × 4.965 = 14.55 4/5 (0.25) infiltration allowar (0 rold = 22,500 L/AL/d infiltration allansance = 22,500 × 11 Ra × 1d = 2,86 L (D.) Hed 86,400 5 5. avg. dry weather flaw = 2.86 + 4.96 = 7.82 43 6.25 PDWF = 14.55 + 2.86 = 17.41 45 65 7) As an acisting development: A = 23 Ra, Bp. dousty = 95 persons Design pop. = $23 \times 95 = 2185 = 2185$ (2.25) avg. flar rate = $275 \ L/c/d$ avg. powzego flow = $2185 \times 275 \times 1 = 6.95 \ 5.05$ 86,40 $P_{f} = 1 + 14 = 3.56$ (5) 4+52.185 Perk Rentezo for 3.58 × 6.95 = 24.7 4 6.95 Sufil tration allowants rate = 22,500 L/Beld Sufil Westion allowants = 22,500 × 23 × 1 = 5.99 % SON ю ¥З 86,400 PDWF = 241.7 + 5.99 = 30.69 4/5. HL Swideline: OPDa = GxPxPf 86.4 BPau = 340 4/c/d × 2.185 × 3.56 = 30.6 4/6. (1)86-4

#8

5)	ant	hrac nol	te		J	>=	1.5	m,	٤	= 0	5.5		d	=]	1-1 "	nm q	6	= (9.°	13						
	Sa	nd			C) =	0.	3m		2=	0.0	÷,	d	=	0	-6m	m 9	6 =	6	.8.	2			_		
	V -	a = T =		Sm	1h	-	- 0	285	5 m	(MU	n	-	0.	60	m=	+ 1	m/s	-	-		-		-			-
																					_					
F	5	anth	rai	te	:	R	e =	¢.	JV.	x_	= (0.7	3)	0.	00	1 X	0.0	64	17	mk	.)	=	2.9	io		
				•				V	-			_	1.	.15	6	× io	-6	m	2/5				_			-
	_			-	-	. 0	4	+	3	4	n 7			24		2		+ 1	3	4	×	275		26	+0	3
				Ca		R	e.	T (Re	<u>т</u> ,	0.7	τ		2.9		50	2.9	T C			11	(D.	38	.10	+0.	1
																1.0										
h	2	1.06	7	Cp	D	Va	2		F.C	1.06	7	, 10	3.32	3		(0.0	204	121	m/s)^	1.5	m =	0	.58	6m	-
		ø		Ð		ε	4	el el	licie	0.7	13	he	1.81	m/:	5	10 13	Ø.	54	-	0.	001	M	_			+
	+	-			-				-											-			-	-		T
Fr	r.	san	1:		Ro	1	ø	AU	la	= (9.8	a	× (7.0	000	6 m	1 *	۵.	00	417	-m	(5	=	1.7	7	T
		san						2				1	.15	6.	44	1-6	mə	ls								
				-		1	-					-			-		_	-	_							_
		Cd	=	24	+	30	-	t E	3.3	4	=	24	· +	-	3	+	9.3	4	> 1	3.5	6	+ 2	P.2€	5 †	- 8-1	2'
				RE	-	Ňĸ	e					• 7 %	•		1.+-	-						-) {	5-15	5	-
	N	= (.0	67	CD	T	Va	2	1	7	1.0	67	~	16.	15		(6). ac	541	7 n	n/s)	م ن	7.3	=	- 0.	728	3 (
		1	6	E	ν	ε	4	d		0	.82	ຸົ	9.	81	m [5	2	ε	.4	4		٥	.00	06			-
						10															-					-
-	-	1				-0	~		20		_		21	ſ												+
	10+	al -	κL	2	0.	281	0 1		·	a 7	-		2(*	t n	n.	2	,	+								+
3)		For	0,	6 m	ท	5ar	d	an		qu	i UZ	but	ī d	-i7	e	P	æ	nth	2100	ale		io :				
/		۵, .			1			21	2	V						<u>د</u>	(0)	*			112			_	(0	-
		Д, -	÷ (2.6	(6	2.6	_1	γ^{\prime}	2	-	1.3	ð	<i>.</i> .	- 7	the	an	XKr	aai	ts.	Re	the	s l	peli	m	the	p