1) 

$$
\begin{array}{ll}
220 \mathrm{mg} / L \operatorname{s5} & A_{p}=500 \mathrm{~m}^{2} \\
200 \mathrm{mg} / \mathrm{B} B_{00} & \\
& g_{\text {max }}=28,800 \mathrm{~m}^{3} / \mathrm{day} .
\end{array}
$$

$$
\begin{aligned}
& \text { moe. SOR }=\frac{Q_{\text {max }}}{A_{p}}=\frac{28,000 \mathrm{~m}^{3} / \text { day }}{500 \mathrm{~m}^{2}}=m^{3} / \mathrm{d} / \mathrm{m}^{2} \text { OiK } \frac{56 \mathrm{~m}^{3}}{d \cdot \mathrm{~m}^{2}} \\
& t=1 h=0.0417 \mathrm{~d}=\frac{500 \mathrm{~m}^{2} \cdot D \mathrm{~m}}{28,000 \mathrm{~m}^{3}(\text { day }} \\
& D=2.34 \mathrm{~m} . \\
& R_{B O D} \text { at } Q_{\text {mace }}=\frac{1}{0.018+0.02(1)}=26.3 \% \text { remand. } \begin{array}{l}
73.7 \% \text { remains or } 147.4 \frac{\mathrm{~ms}}{\mathrm{~L}}
\end{array} \\
& R_{S S} \in Q_{\text {mare }}=\frac{1}{0.0075+0.014(1)}=46.52 \text { remavet } \quad 53.52 \text { remains or } 117.7 \frac{\mathrm{~ms}}{\mathrm{~L}}
\end{aligned}
$$

SS removed contritates to sludge.

$$
\begin{aligned}
\text { Slug } & =28,000 \frac{\mathrm{~m}^{3}}{\mathrm{~d}}\left(220 \frac{\mathrm{mg}}{\mathrm{~L}}\right)(0.465)\left(\frac{100}{5}\right) \frac{\mathrm{Kg}}{10^{6} \mathrm{mg}} \frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}} \\
& =57,288 \frac{\mathrm{~kg}}{\mathrm{~d}}
\end{aligned}
$$

2) $12,000 \mathrm{~m}^{3} / \mathrm{d}=\varphi$ mae $50 R=\frac{Q}{A_{p}}=61 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}$

$$
A_{\rho}=\frac{12,000 \mathrm{~m}^{3} / \mathrm{d}}{61 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}}=196.7 \mathrm{~m}^{2}=\frac{\pi D^{2}}{4} ; D=15.8 \mathrm{~m} .
$$

we $D=16 \mathrm{~m}$ let depth $=2.1 \mathrm{~m}$.

$$
\frac{\forall}{Q}=\frac{\left(\pi \cdot 8^{2} \mathrm{~m}^{2}\right)(2.1)}{12,000 \mathrm{~m}^{3} / \mathrm{d}}=0.0352 \mathrm{~d}=0.844 \mathrm{~h}
$$

let depth $=2.5 \mathrm{~m}$ to give $t=1 \mathrm{~h}$

$$
W \nabla R=\frac{12,000 \mathrm{~m}^{3} / \mathrm{d}}{\pi \cdot 16 \mathrm{~m}}=238.7 \mathrm{~m}^{3}(\mathrm{dkg} / \mathrm{m}=2.76 \mathrm{~L} / \mathrm{s} / \mathrm{m} \text { o.K. }
$$

3) $B O D_{5}=150 \mathrm{mg} / \mathrm{L}$ Effluent to be $20 \mathrm{mg} / \mathrm{L}$

Filter Depth $=2.20 \mathrm{~m}$

$$
\begin{aligned}
& Q_{1}=3,000 \quad \text { m31 day } \\
& E_{1}=E_{2} \\
& \text { Recycle ratio }=2=1
\end{aligned}
$$

a) $E_{\text {overall }}=\left(\frac{150-20}{150}\right)=86.7 \%$

$$
\begin{aligned}
& E_{1}=\frac{150-c}{150} ; \quad E_{2}=\frac{c-20}{c} \quad \frac{150-c}{150}=\frac{c-20}{c} \\
& c^{2}=3000 ; \quad c=\sqrt{3000}=54.77 . \\
& \frac{150-54.7}{150}=0.635=63.5 \% \text {. } \\
& F=\frac{1+2}{\left(1+\frac{2}{10}\right)^{2}}=2.08 \\
& \frac{m g}{\mathrm{~L}} \times \frac{g}{1000 \mathrm{mg}} \times \frac{1000 \mathrm{~L}}{\mathrm{~m}^{3}}=\frac{g}{m^{3}} \\
& W_{1}=150 \frac{\mathrm{~g}}{\mathrm{~m}^{3}} \times \frac{3000 \mathrm{~m}^{3}}{\mathrm{~d}} \times \frac{\mathrm{kg}}{1000 \mathrm{~g}}=450 \mathrm{~kg} \frac{B O D}{\mathrm{~d}} \\
& E_{1}=\frac{100}{1+0.4432 \sqrt{\frac{450}{\forall_{1} \times 2.08}}}=63.5 \%=\frac{100}{1+6.5189 \sqrt{\frac{1}{\forall_{1}}}} \\
& 1+6.5189\left(\frac{1}{\forall_{1}}\right)^{0.5}=1.5748 ; \quad 6.5189\left(\frac{1}{\forall_{1}}\right)^{0.5}=0.5748 \\
& \left(\frac{1}{V_{1}}\right)=0.0077748 ; \quad \forall_{1}=128.6 \mathrm{~m}^{3} \\
& A=\frac{\forall}{D}=\frac{128.6}{2.2}=58.46 \mathrm{~m}^{2}=\pi r^{2} ; \\
& r=4.314 \mathrm{~m} \\
& d=8.62 \mathrm{~m} \\
& 29.0 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& W_{2}=\left(1-E_{1}\right) W_{1}=(1-0.635)\left(450 \mathrm{~kg} \frac{B_{80}}{d}\right)=164.25 \mathrm{~kg} \frac{B 00}{d} \\
& 63.5=\frac{100}{1+\frac{0.4432}{1-0.635}\left(\frac{164.25}{V_{2}-2.08}\right)^{0.5}}=\frac{100}{1+10.788\left(\frac{1}{V_{2}}\right)^{0.5}} \\
& 1+10.788\left(\frac{1}{V_{2}}\right)^{0.5}=1.5748 ; \quad 10.788\left(\frac{1}{t_{2}}\right)^{0.5}=0.5748 \\
& \left(\frac{1}{\forall_{2}}\right)^{0.5}=0.05328 ; \quad \forall_{2}=352.25 \mathrm{~m}^{3} \\
& A=\frac{\forall}{D}=\frac{352.25}{2.20} \mathrm{~m}^{3}=160.11 \mathrm{~m}^{2}=\pi r^{2}= \\
& r=7.139 \\
& d=14.28 \cong 15 \mathrm{~m}
\end{aligned}
$$

Fiter (1) BoD boding: $\frac{450 \mathrm{kd} / \mathrm{d}}{\pi \cdot 4.5^{2} \cdot 2.2}=3.214 \frac{\mathrm{~kg}}{\mathrm{~m}^{3} \cdot \mathrm{~d}}$
Hydraukie loadiry: $\frac{(1+2)\left(3000 \mathrm{~m}^{3} / d\right)}{\pi \cdot 4.5^{2}}=141.5 \frac{\mathrm{~m}^{3}}{\mathrm{~m}^{2} \cdot d a y}$
FILTER (2) BOD boding: $\frac{164.25 \mathrm{~kg} / \mathrm{d}}{\pi \cdot 75^{2 \times 2} 2.2}=0.422 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot \mathrm{~d}$
Hydrautier loading: $\frac{\left(9000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\pi \cdot 7.5^{2}}=50.93 \frac{\mathrm{~m}^{3}}{\mathrm{~m}^{2}} \cdot \mathrm{day}$.
b) $F=\frac{1+1}{\left(1+\frac{1}{10}\right)^{2}}=1.653 \quad \forall_{1}=\forall_{2}=\pi\left(7.5^{2}\right) 2.2=389 \mathrm{~m}^{3}$

$$
\begin{aligned}
& E_{1}=\frac{100}{1+0.4432\left(\frac{450}{389-1.653}\right)^{0.5}=72.95 \%} \\
& E_{2}=\frac{100}{1} \quad 0.45510 .5 \quad W_{2}=(450)(0.2705) \\
& =121.7 \\
& =\frac{100}{1+0.4185(0.1893)}=58.38 \% \\
& \text { Eaceral }=0.7295+0.5838(1-0.7295)=0.887 \text { ok } 88.7 \% \text {. }
\end{aligned}
$$

BOD in efluent $=0.1125\left(150 \mathrm{~g}\left(\mathrm{~m}^{3}\right)=16.88 \mathrm{~g} / \mathrm{m}^{3}\right.$

FILTER (1) BOD looding: $\frac{450}{389} \mathrm{~m}^{3} \frac{B O D}{\mathrm{~d}} \quad A=\pi(7.5)^{2}=177 \mathrm{~m}^{2}$

$$
=1.16 \frac{\mathrm{~kg} B 0 D}{\mathrm{~m}^{3}-\mathrm{Cl}}
$$

$$
\text { hydraulic (oadiry }=\frac{(1+1)\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)}{177 \mathrm{~m}^{2}}=\frac{33.9 \mathrm{~m}^{3}}{\mathrm{~m}^{2} \cdot d}
$$

FILTER (2) BOD loading: $W_{2}=(450)(0.2705)=122 \mathrm{~kg}$ BoD $\}$

$$
\frac{122 \mathrm{~kg} \mathrm{BoD} / \mathrm{d}}{389 \mathrm{~m}^{3}}=0.314 \frac{\mathrm{~kg} \mathrm{BoD}}{\mathrm{~m}^{3} . \mathrm{d}}
$$

hydramier lordity $\left.=33.9 \frac{\mathrm{~m}^{3}}{\mathrm{~m}^{2} \cdot d \quad \text { (famo as for }} \begin{array}{c}\text { Filte © }\end{array}\right)$
c)

$$
\begin{aligned}
& E_{15}=E_{20}(1.035)^{15-20} \\
& \begin{array}{l}
\text { Ist } \\
\text { Fiter }
\end{array}=72.95(1.035)^{-5} \\
&=61.428 . \\
& E_{15}=0.5838(1.035)^{-5} \\
& \text { 2nd } \\
& \text { Filter }=49.1598 .
\end{aligned}
$$

$$
\begin{aligned}
\text { Eqerall } & =0.61428+0.4915(1-0.6142) \\
& =0.8038 .
\end{aligned}
$$

$$
\mathrm{BoD}_{5} \text { in efferest }=0.1962\left(150 \mathrm{~g} / \mathrm{m}^{3}\right)=29.42 \mathrm{~g} / \mathrm{m}^{3} \text {. }
$$

