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ABSTRACT 
Ore bodies from which gold is mined are often composed of minerals containing sulfur, sellenium and tellurium.  Mercury is 
also associated with these three elements and is simultaneously dissolved during gold extraction.  When cyanide salts are 
used to extract gold, mercury cyanide complexes that form enhance mercury mobility and increase mercury concentrations 
in groundwater.  In one instance this resulted in mercury contamination of drinking water supplies where removal to an 
acceptable level could only be achieved at an exorbitant cost.  A combination of precipitation and adsorption are most often 
used to achieve metal removal from waste streams.  However, mercury removal is problematic because in addition to being 
acutely toxic, mercury tends to be soluble in the presence of many common anions and soil materials, and compared to 
other metals it is highly volatile.  Further research into treating mercury contaminated waste streams and into the gold mining 
process is needed. 
 
RÉSUMÉ 
Les minerais desquels l'or est extrait contiennent du soufre, du sélénium et du tellure. Le mercure est aussi présent dans 
ces minerais et se dissout durant le processus d'extraction de l'or. Quand les sels du cyanure sont utilisés pour extraire l'or, 
les complexes de cyanure de mercure qui se forment augmentent le facteur de mobilité du mercure et haussent la 
concentration de celui-ci dans la nappe phréatique. Dans un cas particulier, ceci a mené à la contamination de la réserve 
d'eau potable, où la décontamination aura été seulement possible à un coût exorbitant. Le précipitation et adsorption sont le 
plus souvent utilisées pour décontaminer les eaux usées. Toutefois, l'enlèvement du mercure est problématique car le 
mercure à tendance à être soluble en présence de plusieurs anions et minéraux communs et il est tres volatile. Plus de 
recherche sur le traitement des eaux contaminées et le processus d'extraction de l'or est nécessaire. 
 
 
 
1. INTRODUCTION 
 
In the late 1980’s Canada was the third largest producer of 
gold and most of the mills in Canada were using the 
cyanidation process to extract, on average, about 7.1 g of 
gold from each tonne of ore (Scott, 1989).  Sodium and 
potassium salts of cyanide are commonly employed in 
mining operations to extract gold but these salts are not 
selective and they also dissolve other elements in the ore 
bodies (Scott, 1989).  Sodium cyanide has been the single 
most widely used solvent for extracting gold in recent times 
(Matlock et al., 2002).       
 
During gold (and silver) mining operations other elements 
that are often present and also dissolved include copper, 
lead, zinc, nickel, iron, cobalt and mercury (Boyle and 
Smith, 1994).  Cyanide forms complexes with all the above 
elements, but the soluble mercury-cyano complexes are 
some of the most stable and are especially difficult to 
remove from mine waste effluents (Boyle and Smith, 1994; 
Tassel et al., 1997; Gillis and Al, 1998; Matlock et al., 
2002).        
 
Gold is associated with minerals containing sulfur, tellurium 
and selenium (Müezzinoglu, 2003).  Mercury occurs in 
compounds with gold, silver and the platinum metals, it 
forms sulphides, selenides and a telluride and it complexes 
with antimony and arsenic.  The most common mineral 

deposits of mercury are cinnabar (HgS), metacinnibar 
(HgS) and livingstonite (HgSb4S7) (Jonasson and Boyle, 
1971).  Other chalconide minerals containing mercury 
include tiemannite (HgSe) and coloradoite (HgTe) as 
HgTe(II) and HgTe(III) (Yu et al, 1981).  In soils, mercury 
bonds with clays, organic matter and sesquioxides (Mitra, 
1986), the highest mercury concentrations are observed in 
clays and organic matter (Anderson, 1979), and the 
mercury taken up by these soil fractions is not leached 
under natural conditions (Steinnes, 1990).   
  
Gold and mercury are two of the least abundant elements in 
the earth crust (Schacklette and Boerngen, 1984) and 
mercury is acutely toxic (Mercone et al., 1999).  
Bioaccumulation of organo-mercury is significant as 
mercury concentrations in fish may be 106 to 107 times 
greater than mercury concentrations in ambient waters 
(Riddle et al., 2002) enabling mercury to move up the food 
chain.  Mercury has a high vapour pressure and most 
compounds of mercury are volatile and are readily 
volatilized.  For example, air in equilibrium with liquid 
mercury and cinnabar will contain 14 and 10 mg Hg/m3 
respectively, while the maximum safe level of atmospheric 
mercury is considered to be 0.05 mg Hg/m3 (O’Neill, 1993).  
It is evident that rapid and efficient removal of mercury from 
waste streams needs to be a high priority (Monteagudo and 
Ortiz, 2000), as does reducing the extent to which mercury 
is being released into the environment.  It is estimated that 
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current gold mining techniques may be responsible for 
extracting more mercury than they do gold (Korte and 
Coulston, 1997).  This is possible given that mercury 
appears to be somewhat more abundant than gold 
(Schacklette and Boerngen, 1984).   
 
The first step in metal removal operations is commonly 
metal precipitation (Brown et al., 2000) and metals may be 
precipitated with the addition of sulphide, hydroxide or 
carbonate species, removing the bulk of the metal from the 
liquid phase.  Mercury is usually soluble when it combines 
with carbonate (Jonasson and Boyle, 1971) and both 
mercury hydroxides, Hg(OH)+ and Hg(OH)2 are quite 
soluble in water (Cotton and Wilkinson, 1999).  Of the 
sulphide, hydroxide and carbonate minerals, the sulphides 
are the most insoluble and for this reason metal sulphide 
precipitation is most often used (Beszedits,1979).  The 
sulphides normally form stable compounds with mercury 
under anoxic conditions, (Hutchison and Atwood, 2003) 
however in the presence of mercury cyanide complexes 
stable mercury precipitates cannot be obtained (Tassel et 
al., 1997).   
 
The soluble mercury-cyano complexes, such as Hg(CN)2 
and Hg(CN)4, increase mercury mobilization (Miller et al., 
1996; Gilliss and Al, 1998) and mercury concentrations in 
groundwater, usually as Hg2+ (Andren and Nriagu, 1979).  
Mercury is also soluble when it combines with chloride, 
nitrate, sulphate and some organic compounds (Jonasson 
and Boyle, 1971).            
 
The second step in metal removal operations is usually 
adsorption, since water quality and drinking water quality 
guidelines may not be achievable with precipitation alone 
(Brown et al., 2000).  Adsorption techniques are able to 
achieve acceptable levels of metal removal and adsorption 
is considered to be a promising technique.  However, 
adsorption has not become widely used because activated 
carbon and ion exchange resins are expensive.  This has 
led to the search for more economical adsorbent materials 
(Ho et al., 2002).   
 
With the use of precipitation, followed by a polishing step 
such as adsorption, it is ideal when the greatest possible 
amount of metal removal can occur at the precipitation 
stage.  One problem encountered with the use of 
adsorbents for final removal of excess mercury is that 
mercury may be volatilized during regeneration of the 
adsorbent (Matlock et al., 2002).   However, if inexpensive 
adsorbents are developed so that they can be safely 
disposed of along with the mercury, then this might be an 
alternative.       
 
Two treatments for the removal of mercury released during 
gold mining activities are reviewed and commented upon in 
this paper.  However, at present, there may not be a 
method for removal of mercury after cyanide leaching of 
gold that is economical and adequately protects the 
environment, and the presence of mercury cyanide 
complexes is a factor in this.   
 
 

2. TREATMENTS FOR MERCURY 
 
One of the recent treatments proposed by Matlock et al. 
(2002) for the removal of mercury from gold leachate 
solutions, prior to removal of the gold, is the use of a 
dipotassium salt of 1,3-benzendiamidoethanethiol (BDET2-).  
BDET2- is a soft base that reacts with soft acids such as 
Hg2+ and Cd2+ as predicted by the hard soft acid base 
theory, but does not react with gold or silver.  It is also 
reported to be effective in removal of Pb2+ (Hutchison and 
Atwood, 2003). 
 
BDET2- forms a chelatation complex that is able to remove 
mercury from solution in the pH range of 0 to 14 and the 
process occurs in a matter of minutes, with a concentration 
of only 8 ppb of mercury remaining in solution.  The 
precipitate that forms is then removed in a subsequent 
filtration step.  BDET2- also removes copper, and copper is 
naturally more abundant than mercury.  Therefore, when 
copper is also present the total amount of mercury and 
copper need to be determined in order to know the 
stoichiometric dose of BDET2- required.  The reaction, in 
water, is given below where Me2+ represents the divalent 
metals that will react with the BDET2- (Matlock et al., 2002). 
 
K2C12H14N2O2S2 (aq) + M2+ (aq) →  
   C12H14N2O2S2M(s) + 2K2+ (aq) 
 
Since 2002, studies with BDET2- have shown that it is 
efficient at removing mercury from gold leachate solutions 
after cyanidation, and the compound is now being marketed 
at US$200 per gram (Atwood, 2003).  Hutchison and 
Atwood (2003) describe this technology as promising and 
suggest that using ligands to precipitate mercury is one of 
the most effective treatments.  The fact that Matlock et al. 
(2002) are proposing that the mercury be removed prior to 
the gold would be protective of the environment.  The long 
term effectiveness of this technology may not yet be fully 
known.   
 
Hutchison and Atwood (2003) review a number of 
techniques for the removal of mercury but only provide a 
strong endorsement for the use of BDET2-

.  In their review 
they mention five compounds that complex mercury and all 
of them contain at least one sulphide ligand.  Much of the 
literature on mercury draws attention to the association and 
interaction of mercury with sulfur. 
 
Veiga and Meech (1995) suggest that remediation of 
sediments contaminated with mercury during gold mining 
activities may be effectively accomplished with liming and 
the addition of selenium.  Their article is with respect to gold 
mined in developing countries by burning amalgams rather 
than by employing sodium or potassium cyanide to extract 
the gold.  In the absence of mercury cyanide complexes, 
mercury may be more easily precipitated, however, this 
technology raises the question as to whether selenium 
might have a broader role in treating effluents containing 
mercury cyanide complexes. 
 
Selenium is in the same group of the periodic table as sulfur 
and shares some similar properties with sulfur.  Insoluble 
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metal selenides are able to exist across a wide range of pH 
under strongly reducing conditions and are dissolved under 
oxidizing conditions (Séby et al., 2001).  Species of mercury 
and selenium are highly insoluble under anoxic conditions 
and highly unstable in the presence of oxygen, and 
transformations between the reduced and oxidized states 
are rapid (Mercone et al. 1999).  Selenium is also known to 
lessen toxicity to mercury in mammals (Mercone et al., 
1999). 
 
Sulfur is a major element in the earth’s crust and its 
abundance is in the order of 1,600 mg/kg.  Selenium is a 
trace element that may have an average concentration in 
soils of about 0.39 mg/kg, compared to a typical 
background mercury concentration in soils of 0.09 mg/kg 
(Schacklette and Boerngen, 1984)   
 
Apart from the sulphides, hydroxides and carbonates for 
precipitating metals, selenides and tellurides may also have 
an important role (Buketov et al. 1964).  While there is less 
information on these latter two and less abundant groups of 
compounds, the literature does indicate that they are more 
insoluble than the sulphides.  Table 1 shows the estimated 
solubility product constants for compounds of mercury with 
the sulphide, selenide and telluride ligands (Buketov et al., 
1964). 
 
Table 1.  Estimated solubility product constants of selected 
compounds. 
 
Compound Solubility Product 

Constant, KSP 

Reference 

HgS 2.0 × 10-53 Jackson, 1986 
HgSe 3.2 × 10-65 Buketov et al., 1964 
HgTe 2.5 × 10-70 Buketov et al., 1964 
 
The literature does not appear to contain any reference to 
the ability of selenium to precipitate mercury in the 
presence of the soluble mercury-cyano complexes.  
However, this is an area where research could be 
undertaken.  Veiga and Meech (1995) suggest that the 
removal of mercury with selenium could be inexpensive.  
Reactions with inorganic compounds also tend to be rapid 
and result in the formation of stable products.   
 
Alternatively, research into the use of complexes or 
chelates containing selenium or tellurium ligands might be 
considered for removal of mercury given the highly 
insoluble nature of these ligands. 
 
 
3.  CURRENT CONSIDERATIONS  
   
When sodium or potassium cyanides are used to extract 
gold from ore bodies, the mercury that is released forms 
stable and soluble complexes with cyanide and the 
presence of these complexes make the mercury more 
difficult to precipitate.  Modifications to the gold extraction 
process could minimize the environmental and health risks.    
 
Gold mining goes back as least far as 4000 B.C. when large 
pieces of gold could be extracted with relatively primitive 

methods and tools, and with minimal disturbance to the 
environment (Müezzinoglu, 2003).  Increasingly however, 
gold is being mined from ores that are of a lower grade or 
from ores where the gold is more strongly bonded, because 
these are the main sources of gold remaining (Miller et al., 
1996).  In recent times amalgamation and cyanidation have 
been used to extract this gold but these technologies have 
adverse environmental effects.  Amalgamation results in 
excessive mercury emissions and is now illegal in many 
countries (Korte and Coulston, 1997).  Cyanidation has 
been banned in the Czech Republic and in the US State of 
Montana, while Turkey and Greece have been discouraging 
its use and other US states are considering restricting its 
use (Müezzinoglu, 2003; O,Reilly et al., 2003; Haiduc, 
2005).  Some industrial accidents including the gold mine 
tailings pond overflow into a tributary of the Danube River in 
2000 has prompted this more critical view of the process 
(Müezzinoglu, 2003).   
 
It has been suggested that the cost to benefit ratio for gold 
mining is currently slightly greater than 1.  This, however, 
does not account for “costs” associated with any 
environmental impacts (Müezzinoglu, 2003).  One tonne of 
ore may yield from 2.8 and 21.3 grams of gold (Scott, 1989; 
Warhurst, 1999; Müezzinoglu, 2003).  The large amounts of 
waste ore then require land for disposal (Korte and 
Coulston, 1998).  As lands for agriculture, water resources 
and forests become increasingly scarce a greater need for 
prioritization of land use will develop and more efficient land 
use strategies will be necessary (Müezzinoglu, 2003).          
 
The cyanide salt requirement needs to be greater than that 
amount consumed by the gold alone, since other metals 
present in the ore will also react with the cyanide 
(Müezzinoglu, 2003) and a large amount of the cyanide 
used escapes into the atmosphere (Korte and Coulston, 
1998).  Other metals extracted by cyanide leaching include 
iron, copper, zinc, cadmium, silver and nickel, and the latter 
four metals all form highly soluble complexes with cyanide 
(Müezzinoglu, 2003). 
 
In the 1970s when there were a number of mercury 
poisonings due to the consumption of food products 
contaminated with methyl mercury, this alerted the world to 
the dangers of mercury pollution and a decline in mercury 
production and use followed (O’Neill, 1993).  However, 
mercury being emitted into the environment from industrial 
processes may not have decreased since “despite rigorous 
controls”, between 1987 and 1992 the amount of mercury 
entering the atmosphere and surface and ground waters 
increased 114% (Blackman, 1996).  Although cyanide 
leaching is a chemical process, the gold mining industry is 
not bound by the same controls that apply to processes 
within the chemical industry (Korte and Coulston, 1998). 
 
 
4. CONCLUSIONS 
 
From a survey of the literature on the removal of mercury 
from gold mining wastes, the cyanide leaching method does 
not appear to be of overall benefit.  In addition, the removal 
of mercury from waste streams following the formation of 
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the soluble mercury-cyano complexes, is not easily 
accomplished.  Use of the BDET2- ligand to precipitate 
mercury has received some support, but it would be too 
costly for widespread use.  The price of gold is currently 
US$641 per ounce or the equivalent of US$22.65 per gram.  
The equation for the reaction of BDET2- with mercury 
indicates that 1.8 grams of BDET2- will react with one gram 
of mercury, assuming that no other metals present react 
with the BDET2-.  If for every gram of gold that is extracted, 
one gram of mercury is released into the environment, the 
cost of removing this mercury becomes US$360 for each 
gram of gold obtained. 
 
Sulfur, selenium and tellurium seem to be natural choices 
for precipitating mercury.  Sulfur however, does not work 
when the soluble mercury cyanide complexes are present 
and there does not appear to be enough research done on 
selenium and tellurium to know if they could be used. 
 
If the environmental costs of using cyanide salts for 
extracting gold are factored into the total costs, then the 
gold cyanidation process could be, or could soon become, 
economically unviable. 
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