MEMORIAL UNIVERSITY OF NEWFOUNDLAND

Faculty of Engineering and Applied Science

Engineering 6002 - Ship Structures

MID-TERM EXAMINATION

Date: Mon., Oct. 18, 2010 Time: 9:00 - 9:50 am

Professor: Dr. C. Daley

Answer all questions on this booklet (use back of pages if needed). Total 20 marks. Each question is worth marks indicated **[x]**.

NAME: _____

NUMBER: _____

For the two ship stations shown below, sketch the corresponding bonjean curves on the grid below.
 [4]

[3]

3. Force Method.

a) Sketch 3 alternative approaches to solving this indeterminate problem using the force method. For each approach, you will need two sketches of the auxiliary systems. [3]

b) Using one of the approaches sketched in a), solve the system to find the reaction (in kN) ay B
 [3]

- **4.** Consider a 100m long tanker resting on an even keel (same draft fore and aft) in sheltered waters. The CG of all weights is at midships and is 8000 tonnes.
- a) Use Murray's Method and Prohaska's values to determine the still water bending moment for this vessel (i.e. get both the *weight and buoyancy BMs about midships).

[5]

Formulae

Weight of a Vessel: $W = \Delta = C_B \cdot L \cdot B \cdot T \cdot \gamma$

Prohaska for parallel middle body : $\overline{W} = \frac{W_{hull}}{L}$ the values of a and b are ;

	$\frac{a}{\overline{W}}$	$\frac{b}{\overline{W}}$
Tankers ($C_B = .85$)	.75	1.125
Full Cargo Ships ($C_B = .8$)	.55	1.225
Fine Cargo Ships (C_B =.65)	.45	1.275
Large Passenger Ships (C_B =.55)	.30	1.35

$$\Delta lcg = \frac{x}{\overline{W}}L\frac{7}{54}$$

Murray's Method

$$BM_{B} = \frac{1}{2} \left(\Delta_{a} g_{a} + \Delta_{f} g_{f} \right) = \frac{1}{2} \Delta \cdot \overline{x}$$
$$\overline{x} = L(a \cdot C_{B} + b)$$
Where

T/L	а	b
.03	.209	.03
.04	.199	.041
.05	.189	.052
.06	.179	.063

This table for a and b can be represented adequately by the equation; a = .239 - T / Lb = .1.1T / L - .003

 $\theta = rolling angle$

Trochoidal Wave Profile

$$= R \theta - r \sin \theta$$
$$= r (1 - \cos \theta)$$

$$z = r(1 - \cos \theta)$$

х

Section Modulus Calculations

 $Ina = 1/12 \ a \ d^2$ $= 1/12 t b^3 cos^2 \theta$

Family of Differential Equations Beam Bending

v = deflection [m] $v' = \theta = \text{slope [rad]}$ v'EI = M = bending moment [N-m] $v''EI = Q =_{\text{shear force [N]}}$ v'''EI = P = line load [N/m]

Stiffness Terms

2D beam = 6 degrees of freedom

$$K = \begin{bmatrix} \frac{AE}{L} & 0 & 0 & \frac{-AE}{L} & 0 & 0 \\ 0 & \frac{12 EI}{L^3} & \frac{6EI}{L^2} & 0 & \frac{-12 EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & \frac{-6EI}{L^2} & \frac{2EI}{L} \\ \frac{-AE}{L} & 0 & 0 & \frac{AE}{L} & 0 & 0 \\ 0 & \frac{-12 EI}{L^3} & \frac{-6EI}{L^2} & 0 & \frac{12 EI}{L^3} & \frac{-6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & \frac{-6EI}{L^2} & \frac{4EI}{L} \end{bmatrix}$$

Fixed End Reactions

Loading	Deflection	Slope at
	$v = \frac{Px^2}{6EI}(3L - x)$ $v_{\text{max}} = v_B = \frac{PL^3}{3EI}$	$ \theta_B = \frac{PL^2}{2EI} $
	$v = \frac{Mx^3}{2EI}$ $v_{\text{max}} = v_B = \frac{ML^2}{2EI}$	$\theta_B = \frac{ML}{EI}$
	$v = \frac{px^2}{24EI}(6L^2 - 4Lx + x^2)$ $v_{\text{max}} = v_B = \frac{pL^4}{8EI}$	$\theta_B = \frac{pL^3}{6EI}$
A $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	For $x \le L/2$ $v = \frac{Px}{48EI}(3L^2 - 4x^2)$ $v_{\text{max}} = v\left(\frac{L}{2}\right) = \frac{PL^3}{48EI}$	$\theta_A = -\theta_B = \frac{PL^2}{16EI}$
	$v = \frac{Mx}{6EIL}(L^2 - x^2)$ $v_{\text{max}} = v\left(\frac{L}{\sqrt{3}}\right) = -\frac{ML^2}{9\sqrt{3EI}}$	$\theta_A = \frac{ML}{8EI}$ $\theta_B = -\frac{ML}{3EI}$
	$v = \frac{px}{24EI}(L^3 - 2Lx^2 + x^3)$ $v_{\text{max}} = v\left(\frac{L}{2}\right) = \frac{5pL^4}{384EI}$	$\theta_A = -\theta_B = \frac{pL^3}{24EI}$
	$v = \frac{px^2}{24EI}(L - x)^2$ $v_{\text{max}} = v\left(\frac{L}{2}\right) = \frac{pL^4}{384EI}$	$\theta_A = \theta_B = 0$