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1. Introduction 

1.1 General 

Ice-structure contact can cause large local and global forces on a structure. A model of ice 
contact against a vertical structure is described in this report. The model is an extension of an 
earlier ice load model, (Daley, 1991) which was based on the concept that the formation of ice 
flakes defines the ice load. The main addition to the earlier model is the consideration of the 
extrusion of the granular crushed ice and the rubble surcharge. 

The earlier ice load model is described in Chapter 2. It is shown that an ice load model 
based on flaking events is highly dynamics and chaotic.. The dynamics arise from the sudden 
drops in load, caused by the flaking. The chaos is caused by the non-linear dependence of each 
flake on prior flakes. While the simple flaking model is shown to be correct for certain 
assumptions, which may be valid in ship-ice interaction, it lacks treatment of extrusion which 
is a common and possibly essential aspect of ice-structure interaction. 

Chapter 3 describes some field experiments which indicate the need to model extrusion 
effects.  

Chapter 4 describes a number of candidate ways in which granular ice may be formed. 
The nature of the formation process will affect the nature and properties of the granular 
material. Uncertainty about the properties of granular ice must be considered when selecting 
modelling approaches.  

Chapter 5 discusses how to model the mechanics of granular extrusion. Two different 
approaches are discussed, one more rigorous and one more simplified. It is seen that the 
simpler approach gives results that are well within the range of uncertainty caused by 
uncertainty about the properties of granular ice. 

Chapter 6 describes the modified chaotic flaking model, with the inclusion of extrusion 
forces. 

Chapter 7 shows the results of the model, sensitivities to certain model parameters. 

Chapter 8 discusses the deficiencies of the new model, and describes several additional 
developments and experiments that would be useful refinements.  

 

1.2 Background to the Discrete Chaotic Ice Failure Model 

 In 1988 the Helsinki University of Technology, together with the Wartsila Arctic 
Research Centre, conducted a landmark series of ice crushing tests (Joensuu and Riska, 1988).  
The tests revealed a number of phenomena that had not been noticed so clearly before.  The 
most obvious aspect was that the ice-structure contact geometry was line-like.  It was also 
observed that the force time history contained a sequence of triangles whose duration was 
linked to their magnitude(see Figure 1). Similar features were seen during field tests on the 
icebreaker SAMPO (Riska, Rantala and Joensuu, 1990).  This new data called for an 
explanation.  Daley (1991) produced the needed explanation of the Joensuu-Riska tests by 
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developing an ice load model based on a process of macroscopic fracture events.  The new 
model was not based on continuum mechanics but on discrete fracture events.  The model was 
able to provide a mechanistic and causal explanation for all the key observations; the presence 
of a thin line of high pressure contact, the patterns and magnitude of the force-time history, 
the observed pressure-area effect, the piece size distribution of broken material, and the 
stochastic nature (lack of repeatability) of the tests. 

 A number of researchers have found application for Daley’s ice load process model.  
Kujala et. al. (1993) have applied an extended version of the approach to examine the ice load 
on a ship trapped in pressured ice and is equivalent in many regards to level ice acting on a 
wide structure. 

 Fransson, in examining the results of another set of ice load experiments, found that an 
extended version of Daley’s model worked very well (Fransson et.al.1991). 

 The problem of ice loads on narrow dynamic structures was treated in Riska et.al. 
(1993) using another extension of Daley’s model. 

 

 

Figure 1. Force measurements from a block crushing test. (Riska and Joensuu, 1988) 
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2. Basic Discrete Ice Failure Model 

2.1 Introduction 

The basic chaotic ice failure process model (Daley 1991) assumes that the force is 
governed by the formation of flakes. The flakes, or spalls, remove part of the ice edge, 
lowering the area of ice in contact with the structure. This causes a drop in the ice load. 

 

 

Figure 2.  Contact Failure Process Model (Daley, 1991).  The contact process is modelled by a 
discrete sequence of through-body cracks.  

Figure 3 shows a comparison of the predictions made with the contact model shown in 
Figure 2 and results from crushing experiments(from Figure 1). It is clear that the contact 
model is capable of reproducing the essential behaviour seen in the crushing experiments. In 
doing so the model opens an entirely new way of describing and modelling the apparent 
randomness of ice loads. The contact model is an example of deterministic chaos. 
Deterministic chaos, as the name implies, starts with the premise that all the mechanics are 
deterministic. As the mechanical process proceeds, non-linearities in the mechanics result in a 
chaotic evolution. Chaotic processes are preferable to random processes as an approach to 
modelling a natural system, because they allow the cause of the variations to be clearly seen. 
Figure 4 (from Daley 1991) shows the chaotic attractor of the crushing model. The 
distribution of values can be described by a density function that can be precisely described. 
Although chaotic processes are deterministic, their exact sequence can not be exactly 
predicted in advance. This is because of their sensitivity to initial conditions, along with the 
properties of real numbers. 
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Figure 3. Comparison of model predictions with Experiments (Daley, 1991, Riska and 
Joensuu, 1988) 

 

Figure 4. Two level attractor for the contact model shown in Figure 2 and Figure 3. This 
plot shows that the sequence of force values will never exactly repeat (from Daley 1991). 
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2.2 Equations Describing The Edge Cracking  

 The few equations governing the failure process will next be described. Figure 5 
shows the parameters of the contact. The two dimensional ice wedge is assumed to have unit 
thickness.  The contact width (L) results in a total force (Ft) on the flake of: 

F p
L

t c=
2

 (1) 

 
The shear force Fs is: 

F F p
L

s t c= =sin sinα α
2

 (2) 

 
The normal force Fnor is: 

F F p
L

nor t c= =cos cosα α
2

 (3) 

The length of the crack (B) can be shown to be: 

B

Y
X

cr =
−





−

1
1tan

cos
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tan

θ

α α
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 (4) 

There also exists a special case when θ = 90°, where: 

B
W X

=
−/

cos

2 1

θ
 (5) 

Note that: 

Y
X

L1
1 2tanθ

−





≥  (6) 

 

 The situation shown in Figure 5 can only continue until the direct contact reaches point 
marked “e”.  If a flake does not occur by then, then no flaking is possible at that level, or in 
other words no flakes can occur at angle α. The reason is because the stresses on all flakes of 
angle α will not exceed the value attained when the penetration reaches the point “e”.  Thus in 
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the limiting case (see Figure 6) Eq. 6 becomes an equality and Eq. 4 simplifies to a critical 
value of B; 

B
L

cr =
−

/

cos
sin

tan

2

α α
θ

 (7) 

 

where α is the angle of the flake crack (to plane of contact) and θ is the angle of the edge 
to which the crack runs. Eq. 7 will permit the determination of critical values of shear 
strength. 

 

 

Figure 5. Flake geometry in contact model for the general case. 
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Figure 6. Flake geometry in contact model for the limiting case. 

 Failure will occur on the plane of the crack when the shear stress exceeds the failure 
value specified by the Coulomb failure criteria as: 

 =c pfailτ φ− ⋅ tan( )  (8) 

 
Using Eq. 2, 3 and 4, c becomes: 
 

( )
c p
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 (9) 

 

or in the simple case of θ = 90°, using Eq. 5: 
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The maximum shear will occur at specific angles when: 
 

( )d

dα
α α φ α α

θ
sin cos tan cos

sin

tan
− −





= 0 (11) 

 
Using standard trigonometric transformations: 

cos
sin

tan
2

2α α
θ φ

=
+

 (12) 

which gives: 

tan tanθ φ α+ = 2  (13) 

resulting in: 
 

α θ φ= +
2

 (14) 

Eq. 14 means that cracks on a given level (see Figure 7) will run at an angle dependant on 
the angle of the edge to which they run.  Starting with a boundary at a given angle (90° in 
Figure 7) Eq. 14 results in a simple sequence of angles. For the simplest case of geometry 
considered with φ = 0° (this being the Tresca failure criterion), all cracks will run at the angles 

θ/2,θ/4,θ/8....   For β = 10°, θ = 90°, α = 50°, 30°, 20°,...   The sequence of angles is finite, 
dependent on the highest level of flakes possible.  

 To examine the general behaviour of the system, the strength parameter c is 
normalised by the direct contact pressure: 

k
c

pc

=  (15) 

 When the flaking strength is very high, compared to the direct contact pressure, no 
flakes occur, only full width direct contact.  There is a critical value of strength, below which 
flakes will occur.  The quantity k (normalised strength) also has a critical value.  For the case 
of θ = 90°,β = 0°, k must be less than 0.5 for 45° flakes to occur. 

 Flakes that run to the vertical edge of the ice block are defined as first level flakes.  
Second level flakes are those that run to the edges created by the first level flakes (see Figure 
7). The simplest case for second level flakes has θ = 45°, α = 22.5°.  Each level of flake runs 
to the edge created by the lower level.  A given level of flake will only occur if the shear 
strength is sufficiently low, that is, below the critical value for that level of flake. 
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 Critical values of k (kcr) can be determined as a general function of the variables 
α, β, θ.  Eq. 8 is used with Bcr from Eq. 7 instead of B to give: 

c pcr c= = − −





sin cos tan cos
sin

tan
α α α α α

θ
 (16) 

 
and by using Eq. 15: 
 

k
c

pcr
cr

c

= = − −





sin cos tan cos
sin

tan
α α α α α

θ
 (17) 

 

which gives the values shown in Table 1. The values of φ = 0° and φ = 35° are only 
illustrative. 
 
 

Table 1. Critical values of kcr vs. flake angle α and friction angle φ.  For φ= 35°, the first level 
cracks (62.5°) form if k is less than 0.2603, for second level cracks (48.75°), k < 
0.0777 and so on.  With increasing φ,  the crack angles become larger, while kcr 
values decrease . 

φ=0  °   φ=35 °   

θ° α° kcr θ° α° kcr 

90 45 0.5 90 62.5 0.2603 
45 22.5 0.2071 62.5 48.75 0.0777 
22.5 11.25 0.0995 48.75 41.8 0.0231 
11.25 5.625 0.0492 41.8 38.4 0.0064 
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Figure 7. Definition of hierarchy of flakes. 
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3. Need for Extrusion Effects 

 The model described above was limited by certain assumptions which were 
appropriate in the case of the tests of Joensuu and Riska (1988).  All flakes were assumed to 
fly freely away, so that no granular material was left to be treated.  A related assumption was 
that only through-body cracks were considered, and all cracks were considered to leave the ice 
in a state of quasi-static balance.  

 A number of experiments have shown the above assumptions do not always hold.  
Tests often reveal the presence of granular material trapped in the ice-structure interface, and 
non-through-body cracks in the ice.  Calculations suggest that the magnitude of damage 
experienced on ships is inconsistent with the load being solely due to a narrow straight line of 
direct contact. Either the line is longer (more branched and convoluted) or the pulverised ice 
transmits a significant portion of the force. In field situations, such as at the Molikpaq, a large 
pile of pulverised material can be seen in the interaction zone (see for instance Sanderson, 
1988).  In the medium scale indentation (MSI) tests (Frederking et al 1990 and Sandwell, 
1992), a significant layer of pulverised material was seen (Figure 8).  Tests by Tuhkuri 
(Tuhkuri and Riska, 1990) of ice extrusion and ice crushing have suggested that the extrusion 
of granular materials can be a significant aspect of the ice load process.  Tests at the Technical 
Research Centre of Finland (Muhonen et. al. 1992) have also raised questions, both because of 
the presence of non-through-body cracks and the clear presence of granular material. 

 

Figure 8. Direct and Crushed Ice Contact Geometry from Hobson’s Choice Test TFR04 (taken 
from Muhonen 1991) 
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It has been shown that a dry granular material will normally follow Mohr-Coulomb 
behaviour.  This is a simple linear model for shear failure and flow.  Mohr-Coulomb assumes 
that the material is a continuum.  This assumption may be invalidated if large pieces are in the 
flow.  Nevertheless, it is best to begin by assuming Mohr-Coulomb properties for the granular 
material. Other authors have examined the possibility of using viscous model to describe the 
extrusion of crushed ice, particularly when the granular ice is experiencing high confinement 
pressures and may be undergoing re-crystallisation. (Singh et.al. 1995). 

 It is important to know what effect the pulverised material has on the interaction 
forces.  In the MSI tests there were zones of direct contact and zones of contact with 
pulverised ice.  The pressure distribution in the pulverised ice has been studied experimentally 
by Tuhkuri & Riska (1990) and shown to grow exponentially with distance from a free edge.  
Savage (1989) arrives at a similar conclusion based on numerical simulations of the extrusion 
of granular ice. 

 Figure 9 illustrates the point about the significance of extrusion.  In Figure 9(a) and 
(b), the local ice failure is compared with and without consideration of the pulverised 
material.  Two important changes occur when the pulverised material is considered.  First, the 
force on the structure is transmitted through both the direct high pressure contact and through 
the pulverised ice.  Secondly, and more importantly, the local stress regime in the ice is 
significantly changed due to the pressure distribution in the pulverised zone.   It would seem 
that local flakes would be more difficult to form due to the confining stress of the pulverised 
material. One of the authors, in an analysis of crack formation (Tuhkuri, 1996, p86)  has 
shown that a pressure of 0.5 Mpa acting on both sides of the contact area will close the surface 
cracks and thus significantly hinders their growth.  

 As the interaction shown in Figure 9(b) proceeds the width of the interaction zone will 
grow and the average pressure in the zone will grow.  This process is limited by larger cracks 
as shown in Figure 9(c) and (d).  The large cracks, call them global to distinguish from the 
local cracking in Figure 9(a) and  (b),  will limit the build up of force, pressure and contact 
width.  The global crack is much less influenced by the local contact stresses.  It is almost 
solely dependent on the total force in the contact zone, and therefore not influenced by the 
extrusion process. 
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Figure 9. Local and Global Effects of Extrusion on Ice Edge Cracking and Loads. 

 According to the model given in Daley (1991) the global crack would be termed a 
Level I crack, while the local cracks would be termed Level II and higher.  Daley (1991) did 
not consider the effects of extrusion on the process. 

 The MSI tests produced some interesting and relevant results.  Figure 10 illustrates the 
evolution of pressure vs. area during test TFR02.  There are two opposing tendencies.  There 
are 4 major peaks (a, b, c, d) which are each followed by a substantial drop in average 
pressure.  Each drop is followed by a period of generally rising pressure until the next major 
peak and drop.  It is speculated that each major peak/drop represents a major or global crack.  
Between these major cracks there are numerous minor cracks, with a build-up of the extrusion 
pressures. 

This data raises several important questions that will be addressed: 

• What is the nature of the global cracks that is permitting the average pressure to drop? 

• Is extrusion the cause the cause of the rise in pressures between major cracks? 

• Could certain geometry preclude the development of the global cracks and allow the 
average pressures to continue to rise with area? 

• In Figure 10 the maximum capacity (12MN) of the MSI system is shown.  How would 
the pressures change in interactions of much higher force?  Would the same trends 
continue? 



Discrete Chaotic Ice Failure and Extrusion 

   14Daley R&E 

 

Figure 10. The Pressure-Area Relationship during the Hobson’s Choice Ice Indentation Test 
TFR 02 
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4. Formation of Granular Material 

 While it is clear that the granular material may be an important aspect of the ice-
structure interaction process, it is not yet clear how the pulverised ice is formed. In general 
terms the granular material results from “crushing”, but this offers no explanation of how 
“crushing” occurs.  There are at least 4 candidate mechanisms that will produce pulverised 
ice.  These are: 

(i) the growth and coalescence of micro-cracks will produce granular material.  This 
idea follows damage mechanics reasoning. 

(ii) macro-cracks result in the rapid release of stress, and the resulting tension waves 
cause breakup of the material.  There is laboratory evidence that stress release can 
result in this type of fracturing. 

(iii) macro cracks allow relatively large fragments to be released into the flow of 
granular material.  During extrusion, comminution (repeated breakup due to 
successive ice-ice interactions) will produce the fine granular material.  This process 
will result in a wide variety of piece sizes (see Tuhkuri,1994).  Cross sections taken 
from the MSI tests suggest that this mechanism was taking place. 

(iv)  a cascade of macro cracks takes place to rapidly reduce a large fragment or zone 
into rubble.  This would occur if a single crack were insufficient to relax the stresses.  
After the cascade, presumably comminution would take place.  This is a new idea 
supported by experimental observations (Tuhkuri, 1994). Tuhkuri (1996) has shown 
by using computational fracture mechanics that if a population of surface cracks is 
assumed, the growth of the first crack is followed rapidly by growth of the other 
cracks. Such a process can be described as a cascade of flakes. A cascade of flakes 
has been proposed as a model for ice failure by Daley, Tuhkuri and Riska (1994) 

 

 The authors believe that all four of these mechanisms can be active depending on the 
interaction conditions. For example, if the growth of macro cracks is hindered by high 
confinement, only micro cracking may occur and the mechanism (i) is the active one. All four 
could be active at various times during an interaction.  
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5. Models of Extrusion 

5.1 Introduction 

 The case under consideration consists of a vertical structure, a sloping ice face (due to 
the flakes) and granular ice being extruded upwards and downwards. A rubble pile is formed 
above and below the ice sheet, which causes a restraint pressure at the exit to resist the 
extrusion. Figure 11 illustrates the process that we are considering. The crushed ice is held 
and extruded betwee two non-parallel plates. Both gravity (and buoyancy) and friction resist 
the extrusion.  

 

Figure 11. Overview of Contact with Extrusion.  
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5.2 Savage’s Mohr-Coulomb Extrusion Model 

5.2.1 Introduction to Savage’s Model 

This section introduces a calculation model developed by Savage et al. (1992) for a two-
dimensional extrusion of a cohesive Mohr-Coulomb material. That model can be used to 
predict the pressure distribution developed during an extrusion of ice contained between two 
converging plates (see Figure 12). 

Savage et al. (1992) have given a closed form solution for the case of extrusion between 
parallel plates of equal wall friction. In a general case the two plates need not be parallel and 
the wall frictions can have different values. The general case can also be expanded to take a 
pressure acting on the boundary into account (back-pressure). However, the solution of the 
general case is extremely lengthy in closed form and therefore it is better solved by using 
numerical techniques. 

In the following, both the solutions given by Savage et al. (1992) are given. Then it is 
shown that with a proper choice of material parameters, such Mohr-Coulomb models can be 
used to calculate the measured pressure distribution during laboratory experiments (Tuhkuri & 
Riska 1994). In these experiments, crushed ice was compressed between two parallel 
converging plates. Then the effects of non-parallel plates and non-zero back-pressure are 
discussed and simple coefficients to take these two effects into account are presented. Such 
coefficients can be used to modify the simple closed form solution to approximate the general 
solution. 

 

Figure 12. Horizontal extrusion mechanics. 
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5.2.2 Extrusion of a cohesive Mohr-Coulomb material - General case 

The differential equation for the depth averaged normal stress pyy  in the y-direction is 

(Savage 1989, Savage et al. 1992) 
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where 
δ0 wall friction angle at the 

bottom plate (y=0) 
δh wall friction angle at the 

top plate (y=h) 
ρ density 
C non-dimensional cohesion 
φ internal friction angle 

H initial gap, h(x=0,t=0) 

h(x,t) gap height  
h0(x) initial gap, h(x,t=0) 
x coordinate, see Figure 12 
t time 
L wall length, see Figure 12 
V velocity of the top plate 
P characteristic pressure 
g 9.81 m s-2 
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Equation 18 is given in non-dimensional form. The x-coordinate as well as the gap height 
h(x,t) get therefore values between 0 and 1. Also the time is non-dimensional: at the beginning 
of a test t=0 and h=1, when the two plates are in contact t=1 and h=0. Hence h(t)=1-t. 

 

It is assumed that during extrusion the material parameters C, ,φ ρ  are constants. In 
other words, compaction of the  crushed ice is not taken into account. 

 

If we assume that the converging plates are straight, the initial gap has the form 

 

h x x0 1( ) = − β  (19) 

 

where β is the slope. A positive β gives a closing gap and a negative β an opening gap in 
the flow direction. When deriving the differential equation 1, it has been assumed that β<<1.  

 

Savage et al. (1992) have used the boundary condition that the pressure pxx in the flow 
exit is zero 

 

( )p x y h txx = = = =1 0 0, ,  
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The first order differential equation 1 can be solved when the boundary condition (20) is 
known. The results that will be shown below were obtained by using a fourth order Runge-
Kutta method. It is convenient to start from x=1 and integrate in the negative x-direction. 
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5.2.3 Extrusion of a cohesive Mohr-Coulomb material - Parallel plates 

If we assume that β = 0 and that δ δ δ0 = =h , the equations can be simplified and a 

closed form solution is found (Savage 1989, Savage et al. 1992) 
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5.2.4 Comparison with laboratory experiments  

Tuhkuri and Riska (1990, 1994) compressed crushed ice between two converging plates: 
an ice platen and a steel platen. Local pressures as well as the total force were measured. The 
measured pressure distributions were similar to those predicted by the Mohr-Coulomb model, 
as shown in Figure 13. 

 

 

Figure 13.  Pressure distribution at various layer thicknesses during test No. 21 of Tuhkuri 
and Riska (1994). The calculated values were obtained by using the Eq. 21. 
Internal friction angle was 30.5°, non-dimensional cohesion 0.0005, wall friction 

angle 3°, and density 448 kg/m3. 
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Figure 13 suggests that the pressure distribution during extrusion of crushed ice can be 
predicted with the Mohr-Coulomb model, but only up to certain pressure value. This pressure 
limit, and the subsequent decrease of pressure at the center of the plates, can be partly 
explained by the gradual damaging of the ice plate used in the experiments. The extrusion 
pressure cannot be higher than the strength of the solid ice. However, this damage in the solid 
ice cannot be the whole explanation for the limit, as similar deviation from the Mohr-
Coulomb model at high pressures was observed by Spencer at al. (1992), who compressed ice 
between two steel plates, and so the phenomenon was caused by deformations in the crushed 
ice. The compaction of the crushed ice into solid and the change of material properties during 
this compaction require further studies. 

 

5.2.5 Non-parallel gap 

In the flaking-type ice failure model described earlier in Section 2, the crushed ice formed 
is in an opening channel formed by the parent ice and the structure. This channel has always 
non-parallel sides and the extrusion pressure can be approximated with equation 18. 

Figure 14 shows examples of the pressure distribution at one time instant with different 
values of β . The parameters used were the same as those used in Figure 13 when h=3.6 mm. 
In other words, the curve β  = 0 gives equal pressures than the measured ones, and the curves 
with other β  values show the calculated effect of channel closing or opening. Note that small 
chances in the slope have a remarkable effect on the pressure values. The same effect is shown 
in Figure 15. The pressures in an opening channel decrease rapidly with increasing β . When 
β  = -0.1 (i.e. inclination angle tan-1 β  = 5.7°) the central pressure is only about 10% of what 
is would be if β  was zero. The value of β  has no effect on the shape of exponentially 
decreasing pyy(x) curve. 
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Figure 14. Pressure distribution in a non-parallel gap at one time instant with different values 
of β. The parameters were the same as in Figure 13 when h = 3.6 mm. Solid lines: 
Calculated by Eq. 18. Symbols: Calculated by Eq. 21 and 22. 

The result given in Figure 15 can be used to formulate an approximate method to take the  
β angle into account. If we have calculated a pressure distribution p1(x) with the equation 21 
we can approximate the pressure distribution in an opening channel as  
 

( ) ( )p x f p x, ( )β β= 1  (22) 

 

where 

( )
( )

f
a

n
β

β
=

+
1

1
 

The constants a and n are presumably functions of boundary conditions, loading rate, 
temperature, scale etc. As an example, a and n were calculated for the case shown in Figure 
14. a and n turned out to be functions of x-co-ordinate, but because the pressure values are 
small when x  is zero, we are mostly interested in the small x range. The symbols shown in 
Figure 14 were calculated by using equation 22 together with equation 21 and a=11 and n=3. 
 

a x x

n x x

( ) . .

( ) . .

= + ≈
= − ≈

10 43 8 09 11

315 2 88 3
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5.2.6 Non-zero back-pressure 

If the crushed ice formed accumulates on top of the breaking ice cover the weight of this 
rubble pile forms a non-zero pressure pxx at the flow exit and the boundary condition 20 must 
be changed. The new boundary condition is simply 

( ) ( )p x t p x
k

k

C Gh
yy xx

h

h

= = = = + −







 +1 0 1

1
2

,
tanφ

 (23) 

Figure 16 shows the effect of pressure pxx calculated by equation 18 with boundary 
condition 23. Again, to obtain numerical values, the test case shown in Figure 13 when h=3.6 
was used as an example. 

This result can again be used to formulate an approximate method to take the back 
pressure into account.  If we have calculated a pressure distribution p1(x) without back 
pressure with the equation 21 we can approximate the pressure distribution as  

( ) ( )p x p f p p xxxo xxo, ( )= 1  (24) 

where pxx0 is the back pressure. The correction function is 

( )f p
p

xx
xx

0
01

2630
= +   

where pxx0 is in Pa. Figure 16 shows values calculated with this approximate method. 
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Figure 15. The central (x = 0) extrusion pressure in an opening channel. The fitted curve was 
obtained by using Eq. 22 with values a = 10.95 and n = 2.996. 
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Figure 16 The effect of the back pressure pXX0 on the pressure distribution. Solid lines: Eq. 
(18) with boundary condition given in Eq. (23). Symbols: Eq. (21) with Eq. (23). 

5.2.7 Summary 

• It was shown that the Mohr-Coulomb solution given by Savage (1989) and Savage et 
al. (1992) can be used to approximate the extrusion pressures measured in small scale 
experiments where the converging plates were parallel. 

• The general Mohr-Coulomb solution, Equation 18, can be used to calculate the 
pressure distribution also when the gap is opening or closing (β≠0) and when a non-
zero back pressure (pxxo) is applied. This problem has to be solved numerically. 

• An approximate closed form method was formulated to analyse cases when β≠0 and 
pxxo≠ 0 (Equations 21, 22, and 24). As an example, coefficients for this approximate 
method from one test case were calculated. 
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5.3 Simplified Extrusion Model 

5.3.1  Introduction 

A simplified model is now presented. The model is quite similar to that presented above, 
except that cohesion is not considered. There are several reasons for making this 
simplification. While the model presented above is more precise, it does not appear to fully 
describe the experimental data. The granular material appears to be much more complicated 
than a simple cohesive granular material. Compaction and re-solidification seem to be taking 
place in the center of the granular material, where the pressures have grown large. To include 
consideration of the solidification phenomena, which limit the extrusion pressures, it is 
preferable to be able to do a closed form calculation of the pressure, rather than needing to 
iterate to an answer. As well, in order to study the importance of extrusion in our ice-structure 
contact model it is necessary to be able to perform the extrusion calculations relatively 
quickly. The simplified extrusion equations are described below for six cases, of increasing 
complexity. 

The equations solve the problem of ice being extruded between a vertical structure and an 
ice edge. There is assumed to be a layer of granular material (crushed ice) which is extruded. 
Above the centre of the ice the ice is extruded upwards, and forms a rubble pile above the ice. 
The vertical pressure at the top of the ice (which is the top of the wedge of extruding ice and 
the bottom of the rubble pile) is calculated from the height and density of the rubble. Below 
the centerline of the ice, the granular crushed ice is extruded downwards, and is resisted by 
friction and the buoyant forces on the rubble. 

The ice is assumed to be a granular material with a lateral pressure coefficient k. This is 
an assumption from soil mechanics, which allows the calculation of the horizontal pressures 
on the structure and ice face. Using friction coefficients on both the ice and structure, the 
frictional forces which resist extrusion can be calculated.  

The cases listed in Table 2 are considered. They build up to the ’true’ condition found in 
loads against offshore structures. In the case of vertical extrusion, the extrusion must act 
against gravitational forces. The presence of a surcharge will create an initial pressure at the 
exit. 
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 Table 2  Cases for Simplified Extrusion Calculations 

 GEOMETRY ORIENTATION INITIAL 
PRESSURE 

SKETCH 

Case 1 Parallel horizontal pox  

Case 2 Parallel vertical 0 

 

Case 3 Sloped vertical 0 

 

Case 4 Parallel vertical pox 

 

Case 5 Sloped horizontal pox 
 

Case 6 Sloped vertical pox 

 

 

In all the cases, the same basic differential equation is used, although terms or initial 
conditions will change. The derivation of the simple equation is as follows (see Figure 17 ) : 

 

 

Figure 17. Sketch for derivation of simple extrusion equations. 
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Consider a volume of granular ice dx  by  w  by one unit thick. The pressure on the 
downstream face is P. The pressure on the side walls is (by a simple soil analogy) P/k . The 
total frictional force on the volume is; 

 
( )

total friction
k

P dxi s_ =
+

⋅ ⋅
µ µ

 (25) 

so that the change in pressure across dx is; 

( )
dP

k w
P dxi s=

+
⋅

⋅ ⋅
µ µ

 (26) 

This is simply rearranged into the differential equation in the horizontal case; 

 

∂
∂
P x

x

K P x

w
x( ) ( )

+
⋅

= 0  (27) 

where K is defined below. 

The differential equation in the vertical case includes the weight of the small volume and  
is similarly; 

∂
∂

ρP x

x

K P x

w
gx( ) ( )+ ⋅ − ⋅ = 0 (28) 

Both with the initial condition P poxx ( )0 = . 

where;  

 
x :       vertical coordinate 
w :       width of opening 
            w wo x= − ⋅β  
wo:      width of opening at top 
β:        slope of ice edge 
pox :    ice pressure at top 
Px(x) :  ice pressure in the vertical direction 
 note:  the case number will be used 
           (eg case 1 : P1x(x)) 

 

K :   extrusion pressure coefficient 

        K
k

i s=
+µ µ

 

k :    lateral pressure coefficient 
µs :   ice-structure friction coefficient 
µi :    ice-ice friction coefficient 
ρg :   weight density of granular ice 
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5.3.2 Case 1 - Horizontal, Parallel Plates, with initial Pressure Px(0) = pox. 

This is nominally the same simple case treated by Savage et.al in Section 5.2. The 
granular ice is extruded from between two parallel plates, one of steel and one of ice (Figure 
18) . The centerline (left side in figure) is a symmetrical boundary, across which there is no 
flow. All the granular ice is extruded to the opening. The pressure at the opening is pox.  

 

 The differential equation is; 

∂
∂

P x

x

K P x

wo
with P poxx

x
1 1

0 1 0
( ) ( )

( )+ ⋅ = =   (29) 

The solution to the differential equation, giving the pressure in the x direction is (see 
Appendix A); 

P x pox ex

K x

wo1 ( ) = ⋅
⋅



  (30) 

 

The pressure on the plate is; 

P x
pox

k
ey

K x

wo1 ( ) = ⋅
⋅



  (31) 

 

 

Figure 18. Case 1 - horizontal, parallel plates, with initial pressure Px(0) = pox. 

Equation 22 is compared  to 31 in Figure 19. In this case, it is clear that the simplified 
version of the equation agrees well with the more detailed model. This indicates that there is a 
good basis for extending the simple model to the other cases discussed below. 

The Savage et.al, model starts with a nominal value of 0 for pox, but because of a non-
zero Py (due to gravity) is able to get the integration going. In this case Py is a simple multiple 
of Py, so some initial value for pox is needed to get the integration going. 
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Figure 19. Comparison of Equations 22 and 31. 

5.3.3 Case 2 - Vertical, Parallel Plates, with initial Pressure Px(0) = 0. 

With the extrusion occuring vertically, this case adds the effect of gravity (or buoyancy) 
to oppose the extrusion (see Figure 20). Due to the effect of gravity, the initial pressure can be 
zero. The differential equation is; 

∂
∂

ρP x

x

K P x

wo
g with Px

x
2 2

0 2 0 0
( ) ( )

( )+ ⋅ − = =  (32) 

The solution to the differential equation, giving the pressure in the x direction is ; 

P x g wo
e

Kx

K x

wo
2

1
( ) = ⋅ ⋅ −

⋅





ρ  (33) 

 

The pressure on the plate is; 

P x g wo
e

y

K x

wo

i s
2

1
( ) = ⋅ ⋅ −

+

⋅





ρ
µ µ

 (34) 
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Figure 20. Case 2 Vertical, Parallel Plates, with initial Pressure Px(0) = 0. 

 

5.3.4 Case 3 - Vertical, Sloping Plates, with initial Pressure Px(0) = 0. 

Case 3 further extends the problem by considering a sloping ice face (see Figure 21). We 
now need a modified K , to include the effect of the opening angle on the pressure coefficient. 
The new constant is Ka; 

Ka
k

i
s

s=
+ ⋅ −

+ ⋅
µ µ β β

β µ β
cos( ) sin( )

cos( ) sin( )
 (35) 

Note that Ka = K when β = 0. The differential equation is; 

∂
∂ β

ρP x

x

Ka P x

wo x
g with Px

x
3 3

0 3 0 0
( ) ( )

( )+ ⋅
− ⋅

− = =  (36) 

The solution to the differential equation, giving the pressure in the x direction is ; 

P x g wo

g wo x wo wo x

Kax

Ka Ka

3 ( )

( )

= ⋅ ⋅

⋅ − + ⋅ + − ⋅

















+

+





 −









ρ

ρ β β

β

β
β β

 (37) 

The pressure on the plate is; 

P x g wo

g wo x wo wo x

k Kay

Ka Ka

3 ( )

( )

( )
= ⋅ ⋅

⋅ − + ⋅ + − ⋅














⋅ +

+





 −









ρ

ρ β β

β

β
β β

 (38) 
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Figure 21  Case 3 Vertical,  Sloping Plates, with initial Pressure Px(0) = 0. 

5.3.5 Case 4 - Vertical, Parallel Plates, with initial Pressure Px(0) = pox. 

This case is similar to case 2 except that the initial pressure is pox instead of zero. Figure 
22 illustrates this case. The differential equation is; 

∂
∂

ρP x

x

K P x

wo
g with Px

x
4 4

0 4 0 0
( ) ( )

( )+ ⋅ − = =  (39) 

The solution to the differential equation, giving the pressure in the x direction is ; 

P x pox e g wo
e

Kx

K x

wo

K x

wo
4

1
( ) = ⋅ + ⋅ ⋅ −

⋅





⋅





ρ  (40) 

The pressure on the plate is; 

P x
pox

k
e g wo

e

k Ky

K x

wo

K x

wo

4
1

( ) = ⋅ + ⋅ ⋅ −
⋅

⋅





⋅





ρ  (41) 
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Figure 22. Case 4 Vertical, Parallel Plates, with initial Pressure Px(0) = pox. 

 

5.3.6 Case 5 - Horizontal, Sloping Plates, with initial Pressure Px(0) = pox. 

This case is similar to case 1 except with an opening angle b (see Figure 23). The 
differential equation is; 

∂
∂ β

P x

x

Ka P x

wo x
with P poxx

x
5 5

0 5 0
( ) ( )

( )+ ⋅
− ⋅

= =  (42) 

with, again,  Ka; 

Ka
k

i
s

s=
+ ⋅ −

+ ⋅
µ µ β β

β µ β
cos( ) sin( )

cos( ) sin( )
 (43) 

The solution to the differential equation, giving the pressure in the x direction is ; 

P x pox
x

wox

Ka

5 1( ) ( )= ⋅ − ⋅ −






β β

 (44) 

The pressure on the plate is; 

P x
pox

k

x

woy

Ka

5 1( ) ( )= ⋅ − ⋅
−









β β  (45) 
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Figure 23. Case 5 Horizontal,  Sloping Plates, with initial Pressure Px(0) = pox. 

 

5.3.7 Case 6 - Vertical, Sloping Plates, with initial Pressure Px(0) = pox. 

This case is similar to case 5 except that the extrusion is vertical (see Figure 24) This case 
represents the case closest to the true case. The differential equation is; 

∂
∂ β

ρP x

x

Ka P x

wo x
g with P poxx

x
6 6

0 6 0
( ) ( )

( )+ ⋅
− ⋅

− = =  (46) 

The solution to the differential equation, giving the pressure in the x direction is ; 

P x pox Ka
x

wo
pox

x

wo
g xx

Ka Ka

6 1 1( ) ( ) ( )= ⋅ ⋅ − ⋅








+ ⋅ − ⋅ + ⋅
















⋅
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 −









β β ρ ββ β  

+ − ⋅ ⋅ −
















⋅









+
−









+







( ) ( )wo x wo wo g Ka

Ka Ka

β ρ ββ
β

β  (47) 

 

The pressure on the plate is; 

P x pox Ka
x

wo
pox

x

wo
g xy

Ka Ka

6 1 1( ) ( ) ( )= ⋅ ⋅ − ⋅
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 −
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β  (48) 
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Figure 24. Case 6 Vertical,  Sloping Plates, with initial Pressure Px(0) = pox. 

5.3.8 Comparison and Summary 

The formulae for the six cases described above are plotted on Figure 25, for the case of ; 

wo m

k

g N m
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The case closest to our desired case is PY6. However, as it can be seen that the plots for 
Py5 and Py6 are almost identical, and as Py5 is a much simpler formula, the extrusion 
pressure will be modelled using case 5, with the formulae;  

P x pox
x

wox

Ka

5 1( ) ( )= ⋅ − ⋅ −






β β

 (44) 

P x
pox

k

x

woy

Ka

5 1( ) ( )= ⋅ − ⋅
−









β β  (45) 

 

It can be seen that the opening angle beta has an important influence. When the plates are 
parallel (cases 1,2,4) the curves are straight, while when the plates are not parallel (beta >0) 
the curves bend upward, meaning that the pressures rise very fast. In all cases the pressures 
start from some initial value, which acts as a multiplier for all the pressures. 
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Figure 25 Comparison of Simple Extrusion Formulae 
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6. Discrete Ice Failure Process Model with Extrusion 

The next stage in the process is to add the extrusion effects to the brittle contact model. 
The extrusion effects consist of two aspects; surcharge of a granular medium, and squeezing 
extrusion of granular medium. The granular material is assumed to have been created from all 
the ice removed by all prior shear flakes. Some form of comminution is assumed to have 
taken place, which has converted the relatively large flakes into a granular material. 

The granular material is in two parts. The part above the direct contact (see Figure 26) is 
assumed to be dry and under the action of gravity pushing it down. The part below the direct 
contact is assumed to be wet and under the action of buoyancy pushing it up. Inside any static 
pile of granular material, there are hydrostatic pressures supporting the weight. The lateral 
pressures can be assumed to lateral pressure coefficient as described in the previous section.  

The lateral pressures in the granular material grow very rapidly in the region close to the 
direct contact, and would potentially grow to be greater than the direct contact pressures. It is 
assumed that these high pressures would cause the granular material to re-solidify and then 
would behave as solid ice. A simple treatment of this issue has been implemented. It is 
assumed that all pressures in the granular ice are limited to the direct contact pressure. As the 
direct contact is assumed to be governed by the pressure to cause phase change (pressure 
melting), it would be unreasonable for any pressures to be above the direct contact. This issue 
is not of much practical importance, because neither the direct pressure, or the imposed limit 
have much effect on the contact forces. The main factors are the shear strength of the ice, and 
the passive pressures inside the granular material. Only very close to the direct contact zone 
do the pressures in the granular ice much exceed the passive pressures (i.o.w. gravity effects 
are much greater than pure extrusion effects). 

The model shown in Figure 26 has been developed into two programs for calculating the 
contact process. The algorithm is implemented to a Maple V program (Appendix A) and a 
C++ program (Appendix C).  The two programs are nominally the same, with the Maple 
version being easier to modify, while the C++ program is easier to run.  

Figure 27 shows one of the plots from the Maple calculation. The two triangular regions, 
above and below the ice sheet, represent the accumulated granular piles of extruded ice.  

Figure 28 shows one of the screens of the C++ model. In this case the orientation of 
contact is such that only brittle flaking (no extrusion) is taking place. 
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Figure 26. Brittle edge contact model with extrusion effects.  

 

 

 

Figure 27. Plot of Maple V model after 2.4 m of penetration. 
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Figure 28. C++ Program Screen. 
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7. Results and Sensitivity 

The model as described has a large number of parameters which affect the results. The 
main parameters are; 
 

Table 3. Contact model parameters. 

Parameter MAPLE Variable Typical Value 

edge geometry orig_profile [[0,0],[0,2],[1.3],[2,2],[2,0]] 

direct contact 
pressure 

Pc 50 [MPa] 

ice shear strength c 0.8 [MPa] 

Coulomb friction 
angle (solid ice) 

Φ1 0 deg. 

friction angle (solid 
ice on structure) 

Φ2 0 deg 

friction angle 
(granular ice on 
structure) 

Φ3 6 deg 

friction angle 
(granular ice on solid 
ice) 

Φ4 10 deg 

mass density of 
granular ice 

rho 560 kg/m3 

gravity g 9.8 m/s2 

buoyancy gb .12*g 
 

The results of the model will be described in this section. The results of three runs will be 
presented. The parameters for the three runs are listed in Table 4. The first run is a case of 
only direct contact and flaking, essentially the same as the model described in (Daley, 1991). 
The model is two-dimensional, and so gives forces in terms of load per meter of waterline 
contact.  The second and third runs show the effects of including the extrusion parameters, 
and of making a substantial change to the granular ice density and ice shear strength. 
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Table 4. Run Descriptions 

Run Number Description 
1 Extrusion effects not included (pure flaking case) 
2 Extrusion effects included with values from Table 3 
3 Same as Run 2, but with Pc=20MPa, and rho=400 kg/m3 

 

Figure 29 shows the plot of force vs. Indentation for run #1 of the model,  with only 
flaking (no extrusion). The ice load rises to peak at approximately 8 MN/m, with a mean level 
of approximately 6 MN/m. This is for an ice sheet 2m thick, a direct contact pressure of 50 
Mpa (suitable for ice at -5 C), and a shear strength of 0.8 MPa.  These load levels would not 
continue to grow with further indentation, because no rubble build-up is being modelled. The 
load would continue at these levels no matter how far the indentation progressed   

In the case of an energy limited collision, the floe size and velocity give a kinetic energy 
which limits the work done by the impact. The energy consumed here is ~ 4MN x .5 m  x 1/2, 
which is ~1 MJ /m. Given a total contact length of say 100m, and an ice floe moving at ~ 1 
m/s, this corresponds to a floe  mass of ~50 Mkg. Assuming a 2 m thickness, a 50 Mkg floe 
has dimensions of ~160m x 160m. Clearly this is not a particularly large floe. A typical floe of 
several kilometres across would need to crush much further to absorb the kinetic energy. 
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Figure 29. Force time history for Run #1 - flaking only. 
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Figure 30 shows the forces for run #2, which is identical to run#1 except that the effects 
of extrusion and rubble build-up are taken into account. The plot contains two traces. The 
total load is shown in the upper trace, while the load transmitted through the rubble is shown 
in the lower trace, which together with the direct contact form the total load.   

The load in this case is significantly higher than in run #1, with peak values reaching 14 
MN/m, which are almost double the values from run #1. Clearly the effect of the rubble is 
significant. It should also be noted that these load levels will continue to rise, because the 
rubble pile will continue to grow, placing greater pressures on the extruding ice, and adding 
even greater confinement (compressive stresses) to the incipient flakes. 

The determination of maximum load values will require an analysis of how high the 
rubble pile can grow prior to being swept away. 
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Figure 30. Force time history for Run #2 - flaking + extrusion. 

 Figure 31 shows the results of run #3, which includes two changes from run #2. The 
main change is a reduction in the mass density of the granular ice, from 560 kg/m3 to 400 
kg/m3 . The other change is lowering the direct contact pressure to 20 MPa (from 50 MPa). 
The lower direct contact pressure is a secondary effect, because the direct contact force is 
governed by the shear strength, not the direct pressure. 

The forces in run #3 are noticeably lower than run #2, but still higher than run #1. It is 
curious that run #3 produced a more variable force, with periods of quite low loads, and 
occasional spikes of high load. This system is highly non-linear, and chaotic. It is not 
surprising that changes in parameters can result in even qualitative changes in the load history.  
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It can be noticed in run #3 that the load from the granular extruding ice form a much 
bigger part of the total load than in earlier cases. Further analysis would be required to 
investigate the root causes of these behaviours.  
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. Figure 31. Force time history for Run #3 - flaking + extrusion 

Figs 29 to 31 show that the pressures from the pile of extruded rubble cause higher total 
loads, partly from the pressures transmitted through the granular material, and partly because 
the direct contact forces are higher because the pressure from the pile tends to make the cracks 
less likely to run (i.e. it takes a bigger direct contact before the flake occurs) This agrees with 
calculations by Tuhkuri (1996).  It is important to realise that "squeezing" extrusion of the 
type found by the Savage model, is not very important. The main effects come from the fact 
that the extruded ice forms a pile, and then the pressures are largely a result of gravity and 
buoyancy (together with a lateral pressure K factor - a simple soil analogy), not "extrusion" 
per-se. The reasons that “extrusion” is not important are two-fold; firstly because the 
pressures, even between parallel plates, rise exponentially, they stay very low and then quickly 
jump to values high enough to solidify the ice, and secondly, in this model, the plates are not 
parallel, which leads to an even faster exponential rise. In a 5° wedge, the pressures say at 
background levels until almost at the solid contact face. Even the solidification does not itself 
lead to higher loads, because the combined solid+solidified contact is limited by the crack. 
The main issue in all this is the stress state affecting the spall crack.   
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8. Recommended Developments 

The model shown includes a number of new features. The combination of flaking and 
extrusion, with the effects of rubble pile above and below the ice edge is a new development 
in the study of ice loads. 

There are many aspects which deserve further study and enhancement. The main 
immediate tasks recommended are; 

Further Parametric Investigation There are many variables in the model as presented. An 
examination of the sensitivities of the model to changes in inputs and assumptions would be 
quite useful. Because of the non-linear nature of the model, all the cross-sensitivities would 
need to be examined, which results in a very large array of cases to be run.. The most 
significant item to investigate is the size of the rubble pile. As the rubble pile grows the 
pressures increase. It may be that the resulting pressures have a significant effect on the 
flaking mechanics, even to the point of invalidating some of the assumptions used here.  

 Experimental Verification The model would benefit greatly from comparison to a set of 
specially designed experiments, in which an ice sheet contacts a vertical indentor. The size of 
the rubble pile could be artificially increased to study the effects of rubble build-up. Achieving 
a suitably brittle experimental ice would be the key difficulty. 

 

The longer term developments that are needed are; 

Refinement of Flaking Mechanics  The mechanics of flaking, including the geometry of 
cracks was studied in a recent work by Tuhkuri (1995). It should be possible to include 
refinements to the simple cracking model given here.  

Refinement of Extrusion Mechanics The model presently assumes a simple dry granular 
material model. It would likely be beneficial to include cohesive and viscous effects, 
especially for that material subject to high confinement pressures. While this report suggests 
that extrusion is not very important, that conclusion may change for cases where flakes do not 
form.  

Inclusion of 3D Effects  Various tests have shown that contact results in 3 dimensional 
effects. The pattern of direct contact is not a straight line as is assumed here. The pattern of 
contact is a 2D watershed pattern, and the granular ice is extruded between the ice and the 
structure in 3 dimensions. The experimental data available from the Medium Scale Indentor 
Tests (Frederking, et. al. 1990),  would provide useful corroboration, but would require that 
the model be capable of handling 3D effects. 
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9. Concluding Remarks 

The model presented above is a first attempt to combine a discrete flaking contact model 
with extrusion effects. The model shows that extrusion effects arise in two ways. Extrusion 
between two converging surfaces results in pressures caused largely by frictional forces inside 
the granular material. The rise of pressure is approximately exponential, so that the pressures 
toward the centre are much higher than the edge pressures. The rate of rise of pressure is 
increased by the opening angle. In the case presented here, the opening angles are in the range 
~5 deg. To ~45 deg. In this case the pressures in the extruding wedges stay at approximately 
the static level, defined by gravitational effects. Only very close to the direct contact, where 
the gap is very small, does the pressure rise quickly to the limit pressure.  

The model does show that the extruded material has a significant effect on the load 
levels. The main effects come from the fact that the extruded ice forms a pile, and then the 
pressures are largely a result of gravity and buoyancy (together with a lateral pressure K factor 
- a simple soil analogy), not "extrusion" per-se. The reasons that “extrusion” is not important 
are two-fold; firstly because the pressures, even between parallel plates, rise exponentially, 
they stay very low and then quickly jump to values high enough to solidify the ice, and 
secondly, in this model, the plates are not parallel, which leads to an even faster exponential 
rise. In a 5° wedge, the pressures say at background levels until almost at the solid contact 
face. Even the solidification does not itself lead to higher loads, because the combined 
solid+solidified contact is limited by the crack. The main issue in all this is the stress state 
affecting the spall crack.   
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Appendix A: Maple Derivation and Calculation Files 



Discrete Chaotic Ice Failure and Extrusion 

  Appendix B Daley R&E 

Appendix B: Mathcad Simulations 
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Appendix C: C++ Program Listing 


