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TERMINOLOGY 
 
 

 
Ω smallest angle between the chord of the waterline and the line of the first level of framing 
τc critical buckling stress in shear 
τa applied vertical shear stress 
σa    applied vertical bending stress   
σc   critical buckling stress in compression, according to UR S11.5 
σu   specified material ultimate tensile strength 
σy minimum material upper yield stress 
a main frame span 
AF Area Factor 
Af area of flange 
Am minimum main frame web area 
Am FIT web area of main frame as fitted 
At total area of stiffener 
b (1) height of the rectangular ice load patch 

(2) width of outstand of flanged section 
beff width of shell plating that acts effectively with a framing member 
bt breadth of bulb plate flange section 
cx distance from the shell plating to the centre of gravity of the stiffener 
E modulus of elasticity 
F total glancing impact force  
hw height of web 
j number of fixed support end conditions (equal to 0, 1 or 2) 
KA coefficient accounting for effect of frame cant 
ka1,2,3 coefficient account for location of the section equal area axis 
L ship length (Rule Length as defined ins UR S2.1) 
LL length of loaded portion of span 
OF frame orientation factor 
P Pressure 
Pavg average pressure 
PC Polar Class 
PPF peak pressure factor 
Q line load 
s main frame or longitudinal spacing 
t as built plate thickness 
tc corrosion allowance for internal structures 
tf thickness of flange 
tmin required minimum shell plate thickness  
tnet plate thickness required to resist ice loads  
tw web thickness 
twear thickness addition for corrosion and/or ice-induced abrasion 
UR IACS Unified Requirement 
w width of the rectangular ice load patch 
zp sum of plastic section moduli of flange and shell plate as fitted 
Zp plastic section modulus of frame section including effective plating as fitted 
Zpr Reduced plastic section modulus in combined bending and shear 
Zpm FIT plastic section modulus of main frame as fitted 
Zpm min minimum required plastic section modulus of main frame 
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1. INTRODUCTION 
 
This document describes how the IACS Polar Class Unified Requirements have been 
developed.  It explains how the principles for design and analysis were established, how 
design cases were identified, and how systems of equations describing these were 
formulated and compared with predictions from finite element models.  Examples 
illustrating results are presented, illustrating trends with polar class, frame spacing and 
span.  Other examples also show how well balanced certain existing designs would be 
against the new criteria. 
 
The full derivations of many of the UR equations are quite complex.  They are presented 
in Annexes to the report.  A number of documents are noted as references.  Many of these 
were produced during the UR development process.  They provide more details of the 
rationale behind the selection of the methods and assumptions presented here. 
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2. PLASTIC DESIGN AND DESIGN CRITERIA 
 
2.1 Rationale for Plastic Design 
 
Several current sets of ice design rules and standards, including those of the Russian 
Maritime Register (MRS, [1]) and those of the Canadian Administration (CASPPR, [2]) 
use plastic design methods.  This is unusual in ship design, where most traditional rule 
formulations are based on elastic criteria.  There are several elements to the rationale for 
the use of plastic design for ice-structure interaction.  These include: 
 
• Using plastic design can help ensure a better balance of material distribution to resist 

design and extreme loads.  This is particularly important because extreme ice loads 
can be considerably in excess of design values.  This is more likely for ice loads than 
(for example) for wave loadings.  The use of plastic methods ensures a considerable 
strength reserve, which may or may not be the case with elastic design. 

• Plastic design can allow considerably lighter structure, particularly when the return 
period for design loads is relatively long and when cumulative damage (deformation, 
fatigue cracking, etc) is not a major consideration. 

• Plastic design methods are more applicable to damage analysis, which will allow the 
assumptions in the URs to be tested against experience and refined in future as 
necessary. 

 
These considerations tie in well with the design scenarios and load models developed for 
the URs [3, 4], and with actual operating practice for ice class ships.  Occasional local 
deformation (denting) has tended to be an acceptable consequence of ice operations, 
provided that this does not compromise the overall strength or watertight integrity of the 
ship. 

 
2.2 Acceptable Limit States 
 
The selection of structural design criteria for plastic design is more difficult than in 
elastic design.  In the latter, first onset of yield is relatively easy to predict, and thus 
offers a simple criterion for design.  In plastic design, there are many possible limit states 
ranging from yield through to final rupture.  
 
There are various ways of describing the design limit states used in the UR proposals. 
Nominally, the limit states are plastic collapse mechanisms. However, they are quite 
simplified mechanisms. For several reasons the real structure will not collapse like the 
assumed mechanism. The main reasons are that the assumed mechanism ignores the 
beneficial effects of membrane stresses and strain hardening. As a consequence the real 
structure will have a substantial reserve beyond the design condition. More precisely 
then, the design limit state represents a condition of substantial plastic stress, prior to the 
development of large plastic strains and deformations. 
 
The points at which the initial changes in stiffness can be expected can be predicted with 
reasonable accuracy by relatively straightforward analytical methods.  The methods 
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selected to derive the URs are energy methods, which balance external and internal work 
under certain loading and response mechanisms, as described below.  Unfortunately, such 
methods can not  provide deflection or strain predictions, and so it has been necessary to 
rely on finite element methods to ‘calibrate’ these aspects of the design criteria and 
procedures.  Specific examples of how this has been done are noted below. 
 
The actual formulae are directly derivable from rigid-plastic energy-based collapse 
analysis methods. This type of analysis employs small-deflection assumptions and 
therefore excludes the strength reserve mechanisms (membrane, stain hardening) 
mentioned above.   
 
Full non-linear finite element analysis has been used to verify the formulae and show the 
level of reserve strength. At the design limit states the structures lose stiffness, but are 
still able to carry higher loads. Figure 2.1 illustrates the behaviour of a typical frame, and 
Figure 2.2 provides an associated FE analysis. 

 
Figure 2.1 Typical load deflection curve for a frame showing the design point. 
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Figure 2.2 Load vs. Deflection and state of stress for a typical ice frame.  
 
 
 
 
2.3 Energy Methods and Associated Issues 
 
Energy methods provide a powerful analytical tool.  However, some features of energy 
methods should be understood by their users.   
 
In order to apply the method, a response mechanism has to be selected.  There are many 
possible mechanisms for any load/structure combination, and it is necessary to find the 
one that gives the lowest structural capacity, as this will be closest to the capacity that the 
structure actually provides.  Even if the lowest solution has been found, the represents the 
upper bound to capacity; i.e. the structure can do no better than this, and may well do 
worse. This statement is true as long as the postulated  mechanism is valid for the 
boundary conditions and if the material is ideally plastic. In the absence of other factors, 
energy methods produce non-conservative results. 
 
Counterbalancing these potential sources of non-conservatism, energy methods (as 
normally applied) do not include all components of any response.  Typically, they assume 
elastic/perfectly plastic material response and thus exclude both membrane and strain 
hardening effects.  These are small in the initial stages of response but provide 
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considerable reserves of strength when the structure deflects significantly – this shows up 
clearly in figures 2.1 and 2.2.  Several other sources of load-bearing capacity may also be 
ignored for reasons of simplicity.  In addition, approval procedures for the steels 
specified for polar ships will ensure that their specified material properties are lower 
bounds to their actual capacity.  Thus, although the mechanisms describing response may 
appear to permit ‘collapse’, the actual collapse load will be significantly in excess of the 
‘mechanism formation’ load. 
 
The energy methods utilized in deriving the URs take account of the following possible 
energy-absorbing mechanisms: 
 

1. a pure bending hinge; 
2. a combined shear/bending hinge; 
3. a shear hinge; 

 
The interactions of bending and shear are described at section 3.2. 
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3. DESIGN CASES AND MECHANISMS 
 
3.1 Assumptions 
 
All of the structural design requirements are based on the UR load model, described in a 
companion document [3].  This model assumes a load patch of constant intensity in the 
vertical direction, peaked longitudinally.  For use in plate, frame, and grillage design the 
load representation is in all cases simplified to a uniform rectangular patch. 
 
The load is assumed to be applied to an ice-strengthened area of the hull, with a 
magnitude and distribution determined by polar class (1-7), hull area (bow, midbody, etc) 
and hull shape (in some hull areas only).  Within the ice-strengthened areas it is assumed 
(and required) that stiffeners terminate in a manner that provides full fixity.  Intersections 
with deep members, decks, bulkheads etc are designed to provide sufficient connectivity 
to offer the same restraint. 
 
The basic design equations assume that frame members have uniform cross-sections 
along their length (see below for treatment of brackets).  It is also assumed that all 
structure has the same material properties, e.g. yield strength is identical for plating and 
framing.  When this is not the case, section properties need to be adjusted as appropriate. 
 
A final assumption used in many of the calculations is that the position of the plastic 
neutral axis of a frame cannot move inside the attached plate, although the equal area axis 
(nominally the same thing) will frequently be within the plate.  Stress/strain compatibility 
makes a locus within the plate impossible in practical terms, and the same assumption has 
been used in other rule systems, for example the CASPPR [2].  However, in the URs the 
neutral axis is permitted to be above the plate, which is not the case in CASPPR.  This 
removes a potential source of non-conservatism for certain (unusual) structural 
configurations. 
 
3.2 Bending and Shear Interaction 
 
In most structures, elements support a combination of bending and shear loads and 
associated stresses.  A frame carrying shear load will have less bending capacity than one 
in pure bending; likewise when bending stresses are present full shear capacity is no 
longer available.  This interaction is recognized in the MRS ice class rules [1] but not 
under ASPPR [2].  In the latter case the two capacities are calculated and applied 
independently. 
 
The current UR proposals treat bending and shear interaction more rigorously than any 
existing rules or standards, by taking into account actual section shape in the calculation 
procedure.  This can be represented by equation 3.1 [5], where α is section-dependent, 
and greater than or equal to one. 
 

M
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T
Tult ult
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⎝
⎜

⎞
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⎞

⎠
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Bending moment, M, and Shear, T have actual and ultimate values as indicated. 
Reviewing this equation, and the curve that can be used to represent it (figure 3.1) it can 
be seen that at full shear any section with α > 1 will have some reserve bending capacity.   
 
 
 

 
Figure 3.1: Bending/shear interaction diagram 
 
How this is established in the URs is described in full in Annex A.  To summarize, it is 
assumed that any section has a web and one or two flanges.  The attached plate 
constitutes the ‘fixed’ flange, and the other (if any) the ‘free’ flange.   
 
Only the vertical part the stiffener is assumed to contribute to shear capacity, but for a 
variety of reasons the full height is taken as contributing to the shear area, not merely the 
web as normally defined.  In the description that follows, ‘web’ is taken as referring to 
this full height or depth.  As the shear capacity of the web is used up, the moment 
capacity of the section reduces until, at the full shear condition , the residual section 
modulus is defined by the free flange contribution only.  Thus, a flat bar has no residual 
capacity, whereas a stiffener with flange area equal to web area would retain 2/3 of its 
initial moment capacity.  This approach is only applicable up to the point where the web 
yields fully and forms a shear hinge.  Beyond that point, a different approach is needed, 
as described below. 
 
In a pure bending hinge, the interaction between shear and bending is not an issue, and in 
a combined hinge it is dealt with as described.  The shear hinge has required some 
additional consideration in order to allow reasonably full treatment of some response 
mechanisms beyond the full shear condition described above.  When a shear hinge is 
assumed to form by fully yielding the web, the flanges can still provide additional load 
bearing capacity.  In a truly pure shear collapse, the total areas of these flanges would 
also need to reach yield.  However, there will normally be a lower energy collapse path 
involving localized bending hinges in each of the flanges.  These local hinges form part 
of the assumed response mechanisms for the asymmetrical case described below.  In the 
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symmetrical case (centred load) shear hinges are ‘designed out’, and the local hinges can 
be omitted. 
 
To be more accurate, all the combined bending/shear hinge models could include a 
progressive flange hinge allowance of this type.  As the web yields, the modulus 
calculation takes less of the attached flange (plate) contribution into account, and so this 
could be added back into the equations.  For any polar class ship the magnitude of the 
contribution will amount to a few percent, and it is considered more appropriate to limit 
the complexity of the design equations and leave  this as a strength margin.  It can be 
noted that in the latest MRS rules, a potentially substantial flange effect is included.  
However, under that approach, only a reduced ‘α’ factor is allowed, and the overall effect 
is thus similar for section shapes typical of Russian practice. 
 
3.3 Load Cases 
 
During the development of the URs, there was considerable debate regarding the 
selection of design load cases.  However, there was never any dispute that one of these 
should be the centred load case, where the ice load is applied at mid-span of the frame, as 
shown in figure 3.2.   
 

 
Figure 3.2: Symmetrical (centred) load 
 
The second case forming part of the UR system has the load concentrated towards one 
end of the frame, as in figure 3.3.  Work during the development process demonstrated 
that this may giver lower collapse loads for certain cases.  The dominant mechanism will 
depend on the section shape and on the load length and intensity. 
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Figure 3.3: Asymmetrical (end) load 
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4. SYMMETRIC LOAD CASE 
 
4.1 Selection of 3-Hinge Mechanism 
 
There are several possible response mechanisms under the centred load, including: 
 

- 3-hinge bending/shear; 
- 4-hinge bending/shear; 
- 2 shear hinge; 

 
These are illustrated in figure 4.1 
 

2 hinge

bending hinge (no shear)
bending hinge (reduced capacity due to shear)

Shear hinge

4 hinges

3 hinge

Symmetrical collapse mechanisms

 
Figure 4.1: Symmetrical Collapse Mechanisms 
 
Solutions for the 3 and 4 bending/shear hinge response were developed and compared, 
and it was concluded that the 3 hinge normally dominates, or else is sufficiently close to 
the 4 hinge to be used as a proxy for this.  In principle, higher numbers of hinges may 
give lower capacities still, but the differences from the 3-hinge solution always seem to 
be acceptably small.  This conclusion has been validated by a large number of finite 
element analyses of centred load cases, in all of which the 3-hinge allowable load falls 
slightly below the loss-of-stiffness knuckle. 
 
The 3-hinge mechanism involves two bending/shear hinges at the ends (except when one 
end is simply supported – see below), and one pure bending hinge in the middle.  These 
are combined as described in 4.4. 
 
4.2 Special Case – Shear Collapse 
 
In principle, a centred load could result in the formation of either a 2 or 4 shear hinge 
mechanism, with or without flange hinges (see asymmetrical case).  However, the 
proposals preclude this by setting the minimum permissible web area at a value just 
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corresponding to full shear.  This ensures that the design point can be defined by the 3-
hinge mechanism described above. (though at minimum shear area the 2- and 3-hinge 
solutions are identical). 
 
This does not imply that shear collapse under higher loads is impossible, and it may 
indeed take place.  There is sufficient conservatism built into the shear response 
mechanisms for the centred load case to mean that a considerable reserve of strength 
exists in this scenario. 
 
4.3 Special Case – Simple Support 
 
As noted, it is possible that an ice frame will have only one end fixed and the other 
(outside the ice belt) simply supported.  Under these conditions the hinge system has a 
single bending/shear hinge at the fixed end and the same pure bending hinge at the centre.  
This has been provided for by introducing a frame support coefficient, j, to the rule 
equations (j = 1 or 2 fixed ends).   
 
In principle, a more sophisticated treatment of this situation would show that the worst 
location for the load would be closer to the simple support, and a different and more 
complex set of equations would be needed to define the system.  In practice it is highly 
improbable that such a loading would apply, as the icebelt already extends above the 
waterline and peak loads are unlikely to be seen in this area, especially higher up.  
Therefore, the additional complexity of a tailored solution is considered unnecessary. 
 
4.4 Derivation of Requirements 
 
The full derivation of the UR formulae is provided at Annex A.  In summary, following 
the approach outlined above, the steps include: 
 
.1 define the minimum web area required to carry the load in pure shear. 
 

  
y

SbPAo
σ

3
2
1

⋅⋅⋅=      …(4.1) 

  
 
.2 develop the energy balance equation for external and internal work 
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.3 establish the full plastic section modulus, Zp for the centre hinge 
 

  ⎟
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(note that the full version of these equations takes account of several options for the locus 
of the neutral axis.) 
 
.4 establish the reduced section modulus, Zpr for the end hinges, including the 
section shape dependency effect; 
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where 
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.5 combine the capacities to provide a section load limit formula
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Equation 4.5 is not yet in a rule form.  It can be used directly in comparisons with those 
of finite element models or experiments; as for example in figure 4.2., Full model details 
are given at Annex A.  As can be seen, the equation slightly underpredicts the loss of 
stiffness load, and thus relates to plastic strains of fractions of a percent and to very small 
residual deflections.  These are all desired characteristics for the design point, and thus 
this capacity equation is considered to offer a valid basis for the required UR 
formulations. 
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Figure 4.2: Analytical and FE responses 
 
An examination of the form of the capacity equation shows that it contains multiple 
unknowns, and thus the UR version provided at Section 7 does not offer a closed form 
solution.  For any general configuration (frame span and spacing) it is necessary to iterate 
to an acceptable section shape to resist the design load.  Structural optimization therefore 
becomes somewhat more complicated than is the case in the majority of current ice class 
rule systems.  However, the procedures are more rigorous and consistent than those of 
any current system. 
 
The influence of brackets has been investigated by additional finite element analyses, and 
it appears that it is generally acceptable to take effective frame span as being between 
bracket toes.  Classification society practices differ somewhat, but any of their 
approaches will give a conservative result on this basis. 
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5. ASYMMETRIC LOAD CASE 
 
5.1 Selection of Mechanism 
 
As noted at 3.3, the asymmetric (end) load case will not normally govern frame capacity 
requirements, but may do so for certain structural configurations.  The way in which the 
requirements for this load case have been developed essentially allows the centred load 
case to provide many of the constraints for the design domain, and checks that the 
asymmetric requirements are also fulfilled. 
 
A full collapse initiation mechanism for this case, analogous to the 3-hinge case for the 
centred load, is shown at figure 5.1.  However, the way in which this mechanism 
develops differs considerably from the centred load case.  There, the formation of the 
hinges is virtually simultaneous, leading to a rapid loss of stiffness, as shown in the plots 
at figure 4.2.  In the asymmetrical case, the order of hinge formation normally develops 
the shear hinge at the closer support at a significantly lower load level than that for the 
bending hinge in the span.  As a result, the local plastic strains (and residual deformations 
after unloading) can be much larger than those in the centred load case (though still 
normally quite small in absolute terms). 
 
  

 
Figure 5.1: Asymmetrical Collapse Mechanism 
 
This is illustrated in figures 5.2 (drawn from ref [6]), which shows the response of a 
frame to both a centred and an end load, as calculated by F.E. methods and compared to 
‘collapse initiation’ analytical solution.  The end load analytical equation used in this case 
is a less conservative solution than that proposed in the URs, and as a result it can be seen 
that a significant loss of stiffness in the asymmetrical case occurs considerably before the 
predicted collapse (ultimate) load.  Associated with this, the residual deformation after 
unloading would be much higher with this analytical design point for asymmetrical loads 
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than is the case for the symmetrical loads. 
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Figure 5.2: Comparison of responses under analytical ‘collapse’ loads 

 
Other F.E. studies show that the initial knee in the asymmetrical response curve 
corresponds to an end shear hinge. The end shear condition could be used to define 
asymmetrical load requirements, but this provides a more conservative approach than that 
accepted for the centred load.  Several other features of figure 5.2 and its companion 5.3 
should also be noted.  First, figure 5.2 shows that the ‘residual stiffness’ under 
asymmetric load is generally significantly higher than that for the symmetric load, and 
the ultimate load capacity is likely to be higher.  This is borne out by figure 5.3, which 
shows local plastic strains at the ends and under the load.  As with the overall deflection, 
local strain starts to build earlier for the asymmetrical case, but does so more slowly.  
Global or local collapse will both require higher loads under the asymmetrical load for 
this frame, and for any others that have been analyzed extensively in the background 
work for the URs. 
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Figure 5.3: Development of local strain 

 
Consideration was therefore given to defining a stage in the development of the collapse 
mechanism falling between the shear hinge and full collapse initiation.  The approach 
selected is as shown in figure 5.1.  It assumes that the shear panel formed between two 
shear hinges has started to deflect to a point where the flanges of the section are acting as 
independent bending hinges (as outlined at 3.2) but before this generates sufficient 
deformation to require the full bending hinge further along the section.  Interestingly, as 
shown in Figure 5.1 the minimum energy solution for this mechanism does not normally 
have the load right at the support, but starting some distance along the frame, in order to 
allow the flange hinges to develop. 
 
Since substantial deformations are impossible with this mechanism, it was assumed that it 
would keep strains and deflections within acceptable limits. Figures 5.4 illustrates the 
actual outcome.  5.4 is based on the same frames as Figure 4.2, and shows how the new 
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limit load relates to the load deflection curve.  A comparison of the two figures will show 
that for this assumed load configuration, both frames are dominated by the asymmetrical 
loading case, but this is not always the case. 
 
In many configurations, substantial components of an end load will be transmitted 
directly into the supporting structure perpendicular to the frame, rather than by the frame 
itself, as assumed here.  Several existing classification society rule systems have 
procedures for reducing the load under these circumstances.  The UR approach does not 
take account of this for several reasons, including the poor fit of ‘standard solutions’ to 
the response mechanism, and to the more complex treatment of brackets that might 
become necessary. 
 
5.2 Derivation of Requirements 
 
The full derivation of the UR formulae is provided in Annex B.  The steps can be 
summarized as: 
 
.1 balance the external and internal work: 
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where fz can be approximated as: 
 

7.75.51.1 kzfz ⋅+=     …(5.2) 
 
and kz is the ratio of the combined flange moduli to the total section modulus: 
 

Zp
zpkz =      …(5.3) 

 
.2 reformulate to develop the capacity equation for the frame: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⋅+⋅+⋅

⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅

= )75.51.1(
3

2
1

7.kz
L

ZpAw

L
bSb

P yσ
 …(5.4) 

 
Equations 5.4 and 4.5 govern the asymmetrical and symmetrical load capacities 
respectively, and are combined in the rule equations are shown in Section 7.  Figure 5.4 
shows the capacities predicted by equations 5.4 for the same two frames used to illustrate 
the symmetrical response. 
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Figure 5.4: Asymmetrical Response 
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6. STRUCTURAL INSTABILITY 
 
6.1 Introduction 
 
In order for sections to achieve the plastic limit states defined above, it is necessary that 
they do not fail prematurely due to instability mechanisms such as buckling or tripping.  
Failures of this nature have frequently been observed in ice-going ships.  They are 
particularly undesirable in that they can lead to extensive collapse with little or no 
increase in load level, unlike the mechanisms described earlier which have material and 
geometric strength reserves. 
 
A considerable amount of research into instability under (simulated) ice loads has been 
undertaken, using both experimental and numerical methods (refs [7],  [8]).  This work 
has indicated that it is generally sufficient to prevent instability in the elastic response 
regime, for reasons that remain imperfectly understood for at least some of the 
mechanisms involved.  However, the outcome is that the instability requirements in the 
URs can be drawn from existing IACS/class rules in most cases.  Their form is thus 
reasonably familiar. 
 
An examination of the stability criteria below shows that they constrain the design space 
for most frame designs significantly.  If a designer is working with standard sections 
(bulbs, or Ts other than fabricated shapes) these will add further constraints; and it should 
be verified that any series will meet the stability criteria given the wastage allowances 
that also apply (see ref. [9]). 
 
6.2 Treatment of Angled Sections 
 
The responses described at Sections 4 and 5 assume that sections are symmetrical (or 
nearly so) about the axis of application of the load; i.e. they are Ts, flat bars, or bulbs 
normal to the shell plating.  When any of the above sections is not normal, it will lose 
effectiveness in bending and shear; and correction factors for this are included in the 
URs.  It will also tend to ‘trip’; i.e. to rotate further from the normal towards the plate.  
This is prevented in the URs by requiring the fitting of tripping brackets at close spacing, 
whenever the angle from the normal exceeds 15 degrees (see section 7). 
 
Angle sections will always display these asymmetrical behaviours, and their use in polar 
class ships is not recommended.  Wherever they are used, brackets are again required. 
 
6.3 Web Instability 
 
Web instability occurs when shear stresses exceed buckling limits.  The behaviour is 
considered to be reasonably well predicted by relatively standard flat plate formulae.  
These show much better performance for sections with attached flanges (i.e. T-sections, 
angles, and bulbs) than for flat bars.  The general buckling formula are: 
 
 For flat bar sections:   h w / t w ≤ 282 / (σy)0.5
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 For offset bulb flat sections:  h w / t w ≤ 805 / (σy)0.5

 For tee sections:   h w / t w ≤ 805 / (σy)0.5 

 For angle sections:   h w / t w ≤ 805 / (σy)0.5

 
where:  h w = web height  

t w =  net web thickness 
  σy

  = minimum upper yield stress of the frame material  [MPa] 
 

An effective flange; i.e. one that offers the necessary restraint, is provided automatically 
if the flange width criteria are observed.  The minimum acceptable flange width is set at: 
 
  wf > 5 x tw 
 
Standard bulbs are also assumed to have acceptable properties in this regard.  There is 
some experimental evidence to suggest that the flat bars are unduly penalized by these 
formulae, but insufficient data is available at this time to justify any relaxation. 
 
For local failures near the web/plate intersection, an additional criterion is imposed for all 
sections, such that: 
 
 tw  ≥ 0.35*tice*(σy/235)0.5,    
 
 where σy = minimum upper yield stress of the shell plate material (MPa) 
 
In practice, the web thicknesses will tend to be greater than these minimum values in 
order to respect the general web instability requirements and provide adequate shear area. 
 
6.4 Flange Instability 
 
Flange instability occurs when compressive bending stresses in the flange exceed 
buckling limits.  To prevent this, limits are placed on the outstand of the flange from the 
web. 
 
  b / tf ≤ 100 / (σy)0.5,   
 
 where b = width of outstand 
  tf = thickness of flange 

σy
  = minimum upper yield stress of the frame material [MPa] 
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7. UNIFIED REQUIREMENTS 
 
7.1 Summary of Formulae 
 
The framing design criteria in the URs represent an inversion and a combination of the 
formulae presented at Sections 4 and 5 (and their respective Annexes), plus the instability 
criteria derived at Section 6. 
 
Minimum shear area is defined by UR equation 9.1  as: 
 
Am = 1002 * 0.5 * LL * s * (AF * PPFm*Pavg) / (0.577σy)  (cm2)  
 
 where Am  =  minimum main frame web area  [cm2] 
  LL  =  length of loaded portion of span  
   = lesser of a and b  [m] 
  a  = main frame span  [m] 
  b  = height of design ice load patch  [m] 
  s  = main frame spacing  [m] 
  AF  = Area Factor from UR Table 5.3 
  PPFm  = peak pressure factor from UR Table 5.2 
  Pavg  = average pressure in load patch from UR Equation 5.12 [MPa] 
  σy  =  minimum upper yield stress of the frame material  [MPa] 
  
 
Section modulus is then found from UR equation 9.2  as 
 
(Zpm)min = 1003 * LL * Y * s* (AF * PPFm * Pavg)* a * A1 *  KA / (4*σy)  [cm3]      

 
where, Zpm = plastic section modulus of the main frame [cm3] 

  Y = 1 – 0.5 * (LL/a) 
KA = 1 / cosθ 

 θ = angle between the plane of the web and a perpendicular to the shell 
plating at the midspan of the section, if θ ≤ 15 degrees, KA to be taken as 
1.0 

  A1 = maximum of  
 A1A = 1 / (1 + j/2 + kw*j/2*[(1-a1

2)0.5 - 1]) 
 A1B = (1 - 1/(2*a1*Y)) / (0.275 + 1.44kz0.7) 

 j = number of fixed support end conditions of the main frame 
 a1 = Am  / Am FIT 

Am = minimum main frame web area  [cm2]
Am FIT = web area of main frame as fitted  [cm2] 
kw = 1 / (1 + 2*Af/AmFit) 
Af = flange area of main frame web as fitted  [cm2] 
kz = zp / Zp 
zp = sum of individual plastic section modulii of flange and shell plate as 

fitted  [cm3] 
  = wf*tf

2/4 + beff*tnet
2/4 

Derivation of Framing Requirements   21 



 wf = width of flange 
 Zp = plastic section of main frame as fitted   [cm3] 

 
Section modulus for different section shapes is calculated according to UR equations 8.1 
– 8.3. 
 
The instability criteria are covered in UR equations 14.1, etc and are identical to those 
listed in Section 6. 
 
7.2 Application 
 
The form of the equations above is such that they cannot be used directly to create a 
unique set of scantlings for a given overall configuration consisting of frame span and 
spacing, load patch dimensions and pressure.  Finding any ‘exact’ solution will require 
iteration, and developing an optimum (for weight, or cost) will involve more complex 
calculations.  However, checking the compliance of a new or existing design is quite 
straightforward.  Where the scantlings are known, the ‘achieved’ shear area and modulus 
can be calculated directly and compared with the required values from the equations 
above. 
 
A set of spreadsheets have been developed to facilitate the development of scantlings and 
comparisons with existing ships.  A version can be downloaded from the site: 
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8. EXAMPLES 
 
Three sets of examples are presented below and in the Annexes.  These are; 
 

1. A set of trend curves, showing section properties that just comply with the 
proposed URs; 

2. A set of comparisons of rule solutions and FE analysis results, illustrating 
the nature of the design limit states; 

3. A set of comparisons with existing ice-classed ships, showing how their 
frames compare with the new UR requirements. 

 
In (1), the explorations have been made as systemmatic as possible, but this means that 
the section shapes are not always completely realistic or practical, though they do all 
comply with both strength and stability criteria.  This also applies to some of the frames 
analyzed in (2).  In (3), the existing ships are not necessarily built to rule minimum 
values, and are evaluated against a polar class that allows a full set of results to be 
developed for the scantlings.  In the event that a reader wishes to undertake additional 
analysis to explore specific configurations or trends, a spreadsheet used in generating all 
these results can be obtained at the website 
 

 ftp://ftp.engr.mun.ca/pub/cdaley/Polar_Rules/. 
 
8.1 Parametric Variants 
 
A set of plots of shear area and section modulus requirements have been developed for 
some notional structural configurations, in order to illustrate key trends.  The base case 
for all these calculations is a vessel of 30,000 tonnes displacement, with a traditional, 
relatively efficient icebreaking bow form.  Loads have been generated for the bow and 
midbody areas for a range from PC 7 to PC 1. 
 
A basic configuration of: 
 
frame spacing   = 0.35 m 
frame span  = 2.5m 
steel yield strength = 355 MPa 
frame section  = T 
shear area ratio (bow)  = 1.1; i.e frames have 110% minimum shear area 
shear area ratio (mid) = 1.2 
 
is assumed for the initial calculations of frame properties against polar class, shown in 
Figures 8.1(a) for the bow, and 8.1 (b) for the midbody.  All results quoted are for net 
scantlings, and it should be recognized that all thicknesses used will need to be increased 
by 2 mm (or more) to meet the wastage requirements. 
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Figure 8.1a: Bow Frame Requirements 
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Figure 8.1b: Midbody Frame Requirements 
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In order to simplify the comparisons, all frames have been developed as follows.  The 
web thickness is initially set at plate thickness, and flange thickness is the same.  The 
required shear area is developed by giving the web adequate depth.  The section modulus 
is then checked.  If it is inadequate, the web depth is increased (and thickness reduced) 
and flange thickness and outstand are increased.  The process is concluded when a 
section modulus between 1 and about 1.05 times the required value is generated, and 
when all other constraints (stability, etc) are respected. 
 
The results are largely self-explanatory.  The actual shear area is above the minimum 
possible value (by 10 or 20%) while the section modulus is a little above the target. 
 
Additional calculations have been undertaken to illustrate how changing certain 
assumptions will change these results.  All of these are based on the same vessel 
geometry, now at PC 4 class and 20,000 tonne displacement.  Frame span is varied from 
1.75 to 3.25 m, spacing from 300 to 600 mm, with most dimensional ratios kept constant.  
The results are shown in figure 8.2a and b, and in Table 8.1 
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Figure 8.2a: Frame Span Dependency 
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Note: varies only flange thickness and width ratios – all other ratios constant 

Figure 8.2b: Frame Spacing dependency 
 
Table 8.1: Frame Details 
Frame spacing dependency
fr_sp (m) 0.3 0.35 0.4 0.45 0.5 0.55
span (m) 2.5 2.5 2.5 2.5 2.5 2.5
tp (mm) 13.9 15.5 17.0 18.3 19.5 20.5
tw (mm) 13.9 15.5 17.0 18.3 19.5 20.5
hw (mm) 199.0 199.2 199.5 200.0 200.4 200.9
tf (mm) 20.8 22.5 23.8 24.7 25.3 25.7
wf (mm) 214.9 186.0 169.8 173.9 165.7 164.4
Frame span dependency
fr_sp (m) 0.35 0.35 0.35 0.35 0.35 0.
span (m) 1.75 2 2.25 2.5 2.75 3
tp (mm) 21.6 21.6 21.6 21.6 21.6 21.6
tw (mm) 21.6 21.6 21.6 21.6 21.6 21.6
hw (mm) 280.4 303.4 323.6 340.8 361.0 384.0
tf (mm) 21.6 21.6 21.6 21.6 21.6 21.6
wf (mm) 108.1 108.1 108.1 108.1 108.1 108.1

35

 
 
8.2 FEA Comparisons 
 
Several dozen FE analyses have been undertaken to validate the analytical approach.  
Some examples were given above, using configurations previously presented and 
analyzed by other members of the IACS group.  The similarity of the new results to the 
old was checked, to ensure that the modelling approach was valid and acceptable. 
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Additional FEA results are provided below and at Annex C.  The set shown here in Table 
8.2 and the example in Figures 8.3 are in the bow of the 30,000 tonne ship, for each of 
the seven classes.  The ps and p3h entries give the analytical values for the asymmetrical 
and symmetrical load cases respectively. 
 
Table8.1. Parameters of frames  
30kT, Bow 
var \class C1 (PC1) C2 (PC2) C3 (PC3) C4 (PC4) C4a (PC4) C5 (PC5) C6 (PC6) C7 (PC7)

b [mm] 1220 1180 1120 1060 960 1010 1110 1000 
hw [mm] 620.8 547.3 511.8 484.1 409.9 444.3 411.6 345.3 
tw [mm] 37.5 37.8 21.1 15.8 21.6 13 11.3 10.2 
wf [mm] 187.3 138.8 147.8 142.3 108.1 142.8 124.1 143.2 
tf [mm] 31.8 31.9 27.5 22.9 21.6 22.1 20.3 19.9 
tp [mm] 37.5 30.8 26.4 22.6 21.6 20.0 17.4 15.7 
S [mm] 350 350 350 350 350 350 350 350 
lf [mm] 2500 2500 2500 2500 3250 2500 2500 2500 

fy [MPa] 355 355 355 355 355 355 355 355 
ty [MPa] 205 205 205 205 205 205 205 205 
ps [MPa] 20.94 18.00 10.48 7.79 7.88 6.21 4.56 3.83 

p3h [MPa] 22.32 19.47 10.55 7.98 7.61 6.44 4.72 4.04 
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Figure 8.3a Load-deflection curves for frame C4a  
 
 
Depending on the frame, the asymmetrical load/deflection curve may always be above 
the symmetrical curve, or the two may cross to give a region where a given load will give 
larger deflections for the asymmetrical case (see Annex C).  When the latter situation 
holds, the analytical value for asymmetrical load capacity is always below the 
symmetrical solution, and in all cases checked to date it is at a level below the cross-over 
point. 
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8.3 Analyses of Existing Ships 
 
Table 8.3 presents a selection of existing ship scantlings that have been checked against 
the framing proposals.  Half of these vessels were built to Baltic class, and the others to 
one of the existing polar rule systems.  In the latter case, the polar class against which 
they are analyzed (shown) is nominal, and has been based on a rough match of plate 
strength. 
 
These results are drawn from a broader analysis to show typical outcomes.  In many 
cases, the names of the vessels are not indicated for reasons of commercial 
confidentiality.  The Baltic ships, as expected, tend to show inadequate framing strength 
(see ref.[10] for a discussion of polar/Baltic class alignment).  Ships designed to the 
Canadian requirements often have significant overstrength in the framing.  The Russian 
vessels again have framing weak relative to plating; and again this is an expected trend.  
The latest MRS rules have changed the balance, though not to the same degree implied 
here (more general class comparisons are shown in ref. [3]). 
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Ship number: 4 14 16 21 39 48-50 51 ship 1 ship 2 ship 3 ship 4 SA-15 Samotlor Oden
BOW REGION

Class: 1AS 1A 1A 1AS 1A 1AS 1AS AC4 AC3 AC3 AC4 ULA UL Polar 20
Approx Polar Class 6 7 7 6 7 6 6 1 2 2 2 3 5 2

Approx hull form family 2 2 2 2 2 2 2 4.00 4.00 1.00 4.00 5 2.00 4.00
Displacement: 20.8 14.8 8.3 19.7 11.3 22.1 9.6 6.70 5.69 38.94 6.62 25.55 22.52 13.00

Web height 370 298 260 300 250 320 200 230.00 250.00 508.00 375.00 420.00 240.00 900.00
Web thickness (gross) 13.0 11.0 10.0 11.0 9.0 13.0 10.0 38.00 20.00 32.00 35.00 12.00 10.00 28.00

flange width 39 33 100 33 90 39 30 0 0 0 0 122 200
flange thickness (gross) 30 24 20 24 13 26 16 0 0 0 0 12 35

Associated plate thickness (gross) 19.0 19.5 17.0 21.5 17.5 24.0 19.0 41.0 25.4 36.0 35.0 34.0 23 48
Associated plate wide 300 350 350 350 300 350 350 400.0 250.0 305.0 375.0 400.0 700 850

frame span 3.4 1 3 2 3 3 1 0.5 0.5 0.5 1.5 1.3 1.8 4
FY 235 235 235 235 235 235 235 360.0 360.0 360.0 360.0 320.0 240 490

Plate thickness actual:required 1.04 0.99 0.92 1.05 1.08 1.16 1.01 1.24 1.33 1.19 1.30 1.05 0.68 1.05
Shear area actual(g): required (n) 1.06 0.73 0.73 0.66 0.66 0.80 0.53 1.47 1.80 2.21 1.05 0.49 0.24 1.08

Modulus actual (g):required (n) 0.41 1.02 0.44 0.43 0.31 0.52 0.67 4.10 5.42 11.91 1.48 1.09 0.12 1.39

Ship number: 4 14 16 21 39 48-50 51 ship1 ship2 ship3 ship4 SA-15 Samotlor Oden
MIDBODY

Web height 300 220 230 280 240 220 200 200.00 400.00 300.00 260.00 500.00
Web thickness (gross) 11.0 10.0 10.0 11.0 12.0 11.0 10.0 35.00 34.00 11.00 11.00 21.00

flange width 33 30 100 33 36 33 30 0 0 0 200
flange thickness (gross) 24 18 10 22 19 18 16 0 0 0 25

Associated plate thickness (gross) 19.0 14.0 13.5 19.5 13.5 17.0 15.5 38.0 32.0 24.5 16 34
Associated plate wide 400 350 350 400 325 343 350 500.0 406.0 400.0 700 850

frame span 3 2 4 2 4 2 2 1.0 1.5 1.3 1.8 3
FY 235 235 235 235 235 235 235 360 360 360 360 320 240 490

Plate thickness actual:required 1.30 1.21 1.25 1.35 1.27 1.29 1.28 1.19 1.09 1.04 0.49 0.96
Shear area actual(g): required (n) 1.54 1.61 2.03 1.47 2.48 1.24 1.39 0.76 1.23 0.53 0.47 1.16

Modulus actual (g):required (n) 0.75 0.77 0.59 1.02 0.49 0.72 0.70 0.78 1.48 0.56 1.27  
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9. SUMMARY AND CONCLUSIONS 
 
This document has presented the rationale for the use of plastic design for framing, and 
has shown how a set of design criteria have been developed to allow this.  Stress, strain 
and deflection levels are all important considerations, and all are kept within acceptable 
limits by the analytical representations of the design point in the draft UR.  This has been 
checked by extensive numerical analysis of frames that comply with the proposed 
requirements.  Large factors of safety against ultimate failure are also assured by 
additional stability criteria. 
 
Checks have been undertaken to ensure that the  proposed requirements are not 
excessively complex, and that they can be used to develop practical design solutions.  
Comparisons with existing ships` scantlings show expected trends. 
 
Potential users of these requirements, and other interested parties, are encouraged to use 
and comment on this system of equations. 
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Annex A: Derivation of Section Modulus Requirements for 
Centered Load 
3 Hinge Collapse Case 
 
Introduction 
 
The strength equations in the UR for Polar Ships prescribe required structure to resist the 
design ice loads. At the design load level the structure is intended to exhibit some plastic 
behaviour, yet maintaining substantial reserve against actual collapse or rupture. The 
derivations of strength shown below make use of plastic limit analysis. The load is 
determined by postulating the formation of a plastic mechanism, and equating internal 
and external work. The method assumes rigid-plastic material behaviour and ignores 
large strain and large deflection effects (such as strain hardening and secondary 
membrane stresses). 
 
This annex derives the nominal plastic strength for a central patch load (fig A.1). At the 
point of mechanism formation the external work done by the load is equated to the plastic 
energy absorbed by the structure (per unit displacement).   
 
The normal case involves frames that are built-in on both ends (capable of transmitting a 
plastic moment to the surrounding structure). For this case we define j=2. Alternate cases 
of one or zero moment supports we can have j=1 or j=0 (see fig A.2) 
 
 
   
 

 
Figure A.1 Sketch of system, with assumed plastic mechanism. 
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Figure A.2. For 1 or 0 fixed supports (j=1, 0) we continue to assume a centered load, 
and central hinge. 
 
 
Energy Balance 
 
We start by balancing internal and external work (see fig A.1Figure ). The external work 
is on the left-hand-side (lhs) of equation (1), and the internal work is on the rhs. The 
internal work includes the component from the central hinge, unaffected by shear, and the 
two edge hinges, which have reduced capacity due to shear.  
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where: 

plastic moment: yZpMp σ⋅=   (2)
reduced plastic moment: yZprMpr σ⋅=   (3)

   
note:  j: no of fixed supports 
 fixed-fixed, j = 2 
 pinned-fixed, j = 1 
 pinned-pinned, j = 0 
 
On substitution of (2) and (3) into (1) we have: 
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The next step is to determine the values of Zp and Zpr, for which there are two 
alternatives.  
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Case 1 : Simple Reduced Plastic Modulus 
 
The simplest way to determine the reduced moment capacity is to use a reduced modulus. 
If we assume a simple quadratic interaction diagram (fig A.3Figure ), we can express the 
reduced modulus in terms of the full modulus and the portion of the shear capacity used.  
 

 
Figure A.3.  Assumed simple interaction diagram. The plastic moment and shear 
combine according to the quadratic interaction.  
We can express the reduced modulus as: 
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Shear stress in web: Aw
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Yield shear stress: 3

Y
Y

σ
τ =  (7)

 
The minimum allowable web area Ao corresponds to yield under the design load. 
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Solving for Ao: 
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We can express the reduced modulus (eqn (5)) as: 
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where: 
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Ao
AwAn =  (11) 

 
We denote the minimum modulus (required if web is fully effective) as: 
 

 L
L

bSbPZo
y

⋅⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅

⋅
⋅⋅

=
2

1
8 σ

 (12) 

 
 
We can re-write the capacity equation (eqn. (4)) as; 
 

 ZprjZpZo ⋅+=⋅
2

2  (13) 

  
which, using eqn (10), is simplified to: 

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⋅+=⋅

211
2

12
An

jZpZo   (14) 

 
Setting the normalized modulus to: 
 

 
Zo
ZpZn =   (15) 

we get the interaction equation: 
 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⋅+

=
211

2
1

2

An
j

Zn   (16) 

 
Interaction Plot 
 
Equation (17) relates the normalized section modulus (moment capacity) to the 
normalized web area (shear capacity). The interaction plot shows the minimum 
combination of section modulus and shear area that will support the load (see fig A.4)  
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Figure A.4.  Interaction plot for moment and shear. 
 
 
Capacity Equation 
 
We now want to derive the capacity equation for 3 hinge collapse (centered load). This 
allows us to determine the load, given a particular section. By combining equations (4) 
(9), (10) we get: 
 
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅
⋅⋅⋅−⋅⋅+⋅⋅=⎟

⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅⋅ 22

2
22

4
31

2
4

2
1)(

y

y

Aw
SbPjZpZp

LL
bSbP

σ

σ
  (17) 

 
solving for P: 
 

 
( )

⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅⋅

⋅⋅⋅
+⋅⋅

+⋅−⋅⋅+
=

L
bSbL

Zp
Zpnsj

Zpnsjj

P y

2
1)(

4
13

143
2

1
2

2

σ  (18) 

 
where the term Zpns (Zp-normalized-squared) is: 
 

        

2

2
1 ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅

=

L
bLAw

ZpZpns   (19) 
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For various values of j the specific solutions are: 
 

 
⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅⋅

⋅⋅=

L
bLSb

ZpP yh

2
1

41 σ      j=0                       (20) 

 
 

 
13

91
2
11

2
1

42 +⋅

⋅−⋅+
⋅

⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅⋅

⋅⋅=
Zpns

Zpns

L
bLSb

ZpP yh σ  j=1               (21) 

 
[Note: the pinned-fixed case (P2h) requires that the term under the square root sign is positive. This is 
equivalent to the requirement that the structure does not collapse by shear at both supports. For 9xZpns to 
be less than 1, P1h must be less than 1.155 x P2s.] 
 
 

 

2
16

1

2
1

43

+⋅
⋅

⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅⋅

⋅⋅=
Zpns

L
bLSb

ZpP yh σ   j=2                      (22) 

 
Summary - Case 1: Simple Reduced Plastic Modulus 
 
This completes the derivation of the strength requirements for a centered load for the case 
of a simple shear-bending interaction. The interaction diagram is given by Equation (16), 
and the capacity is given by Equation (18) (or variants (20), (21), (22)). This case results 
in a complete loss of bending capacity when the web is fully yielded. This approach does 
not take into account the contribution of the flanges to either bending or shear after the 
web is fully yielded.  
 
In the next section we will make the assumption that the shear will only affect the 
contribution of the web to the bending moment.  
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Case 2: Reduced Plastic Modulus Using Web Stress 
 
We now examine the case in which the modulus is only reduced by the loss of web 
capacity.  
 
The section modulus (assuming PNA is at the web/plate connection) is: 
 
 ZwZfZp +=   (23) 
where: 

 ⎟
⎠
⎞

⎜
⎝
⎛ ++⋅=

22
tphwtfAfZf   (24) 

 

 ⎟
⎠
⎞

⎜
⎝
⎛ +⋅=

22
tphwAwZw   (25) 

This results in : 
 

 ⎟
⎠
⎞

⎜
⎝
⎛ +⋅+⎟

⎠
⎞

⎜
⎝
⎛ ++⋅=

2222
tphwAwtphwtfAfZp   (26) 

 
 
We again start by balancing internal and external work: 
 

 
L

Mprj
L

Mp
L

bSbP 4
2

4
2

1)( ⋅⋅+⋅=⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅⋅   (27) 

 
where: 
 yZpMp σ⋅=   (28) 
 
 yZprMpr σ⋅=   (29) 
 
which again gives 

 ⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅⋅=⎟

⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅⋅ ZprjZp

LL
bSbP y

2
4

2
1)(

σ
  (30) 

 
The shear is assumed to affect only the web's ability to contribute to bending. The 
reduced capacity is therefore given by: 
 

 
2

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅+=

y

ZwZfZpr
τ
τ   (31) 

 
 
which can be stated as: 
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⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−⋅−⋅=

2

111
Aw
AokwZpZpr   (32) 

 
where: 
 

Zp
Zwkw =       (33) 

 
 
an approximate (within a few %) value for kw is : 
 

Aw
Af

kw
⋅+

=
21

1       (approx) (34) 

 
using equations (11), (12), (15), (30), and (32) the interaction equation can be written as: 
 

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−⋅⋅++

=

111
22

1

2
2

An
jkwj

Zn   (35) 

 
the required modulus is: 
 

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−⋅⋅++

⋅
=

111
22

1

2
2

An
jkwj

ZoZp   (36)  

 
where Zo and Ao are given by equations (9) and (12). Equation (35) is similar to (16), 
with the addition of a kw term.  Using Equation (34) we plot the interaction equation for 
various Af/Aw ratios (see fig A.5). 
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Figure A.5. Interaction plot for moment and shear. 
 
Capacity Equation 
 
We again want to derive the capacity equation for 3 hinge collapse (centered load). 
combining equations (9), (33), (35) gives: 
 

 
P b. S.( ) 1

b
2 L.

4
σ y
L

. Zp. j
2

1 kw
j
2

. 1

1
2

P. b. S.
3

σ y
.

Aw

2

1..
  (37) 

 
solving for P: 
 

P
j 2 kw j. kw j. 1 3 j 2( ). Zpns. j 2 kw. j. 2( )..

6 Zpns. kw2. j2. 2
σ y. Zp. 4

b S. L. 1
b

2 L.
.

.

 (38) 
 
where Zpns is defined in equation (19) 
 
 
 
 
for j=0 (0 fixed supports) solving for P, we have the pressure to cause collapse 
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P 1h 4 σ y. Zp

b S. L. 1
b

2 L.
.

.

            j=0     (39) (same as 20) 
 
for j=1 (1 fixed support) solving for P, we have the pressure to cause collapse 
 

 

P 2h
3 kw( ) kw 1 9 Zpns. 2 kw. 3( )..

2 3 Zpns. kw2. 1.
Zp. σ y. 4

S b. L.( ) 1
b

2 L.
.

.

 j=1      (40) 
 
for j=2, solving for P, we have the pressure to cause 3 hinge collapse: 
 

 

P 3h
2 kw( ) kw 1 48 Zpns. 1 kw( )..

12 Zpns. kw2. 1

Zp σ y. 4.

S b. L. 1
b

2 L.
.

.

 j=2      (41) 
 
for the term under the root sign to stay positive, Zp must be less than Zpmax, where; 
 

 
Zpmax

1
48 1 kw( ).

Aw. L. 1
b

2 L.
.

  (42) 
 
 
note: in cases in which Zp > Zpmax, the frame will first fail by shear at both supports 
(central load). In this case the capacity is nominally limited by: 
 

 

Plim 2
Aw σ y.

3 S. b.
.

  (43) 
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Comparison with plastic FE analysis 
 
Two frames were analyzed using non-linear finite element analysis. In both cases a patch 
load was applied in the center. The frames are shown in fig A.6: 
 

DnV Frame 
- 230x15 web
- 165 x 9.5 flange
- 20 x 400 plate
- L = 1500
- 315 MPa

KSRI Frame
- 326 x16 web
- 120 x 18 flange
- 30 x 400 plate
- L = 2200
- 355MPa

 
Figure A.6. Frames used in validation exercise. 
 
The FE load-deflection curves and the values calculated from equation (41) are shown 
below (see fig A.7). Also shown are the results of equation (22). The calculated values 
agree very well with the onset of large permanent deformations. Equation (41) allows 
higher pressures, and yet is still conservative.  
 

DnV

Finite Element

Equation (41)

Equation (22)

Displacement [mm]

P
re

ss
ur

e 
[M

Pa
]

0 4 8 12 16
0

5

10

15

 
FigureA.7. Comparison of equations with finite-element results. 
note: the DnV pressure was applied over 300 mm, while the 
KSRI pressure was applied over 710 mm. 
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Rule equations 
 
The above derivations lead to two possibilities for a rule equation for checking 
symmetrical loads. Both start with equation (9) for minimum shear area Ao, (which was 
defined Am (eqn 9.1) in the may'99 draft of the UR): 
 

 
Ao

1
2

P. b. S.
3

σ y
.

   (9) 
 
The may'99 draft of the UR contained a rule formula for required section modulus Zp, 
equivalent to equation (17), which with slight re-arrangement can be written as (identical 
to (Zpm)min (eqn 9.1) in the may'99 UR): 
 

 
Zp

P b. S. L.( )
4 σ y.

1
b

2 L.
. A1.

 (44) 
 
where: 

 

A1
1

1
j
2

1
Ao
Aw

2
.

 (45) 
 
New Formula 
 
An improved formula can be found by by re-arranging (36). This proposed formula for 
Zp, would replace (Zpm)min (eqn 9.1) in the may'99 UR. 
 

 
Zp

P b. S. L.( )
4 σ y.

1
b

2 L.
. A2.

 (46) 
 

 

A2
1

1
j
2

j
2

kw. 1
Ao
Aw

2
1.

 (47) 
where: 
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kw
1

1 2
Af
Aw

.
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Annex B: Derivation of Section Requirements for Off-center Load  
Shear Hinge Collapse Case  
 
 
 
Introduction 
 
The strength equations in the UR for Polar Ships prescribe required structure to resist the 
design ice loads. At the design load level the structure is intended to exhibit some plastic 
behaviour, yet maintaining substantial reserve against actual collapse or rupture. The 
derivations of strength shown below make use of plastic limit analysis. The load is 
determined by postulating the formation of a plastic mechanism, and equating internal 
and external work. The method assumes rigid-plastic material behaviour and ignores 
large strain and large deflection effects (such as strain hardening and secondary 
membrane stresses). 
 
This annex derives the nominal plastic strength for an off-center (asymmetrical) patch 
load (see fig B.1). At the point of mechanism formation the external work done by the 
load is equated to the plastic energy absorbed by the structure (per unit displacement).   
 
The normal case involves frames that are built-in on both ends (capable of transmitting a 
plastic moment to the surrounding structure). This case will only be considered for both 
ends fixed (j=2). In the case of j=1 (far end pinned) the solution results in a value of 'a' 
greater than L/2, and is thus illogical. Practically, this means that we only check this 
mechanism for j=2, and that pinned connections are not to be allowed in the ice-
strengthened areas.  

 

 
 

Figure B.1. sketch of system, with assumed plastic mechanism : 
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Energy Balance 
 
The external work done is found by integrating the external load over the deformation 
(for δ =1). The general equation (see fig B.2) for the external work (EWD) is; 
 

 
aL

cbaLacb

a

acca
SPEWD

−

⎟
⎠
⎞

⎜
⎝
⎛ ++−−+

+
⎟
⎠
⎞

⎜
⎝
⎛ +−

⋅=
)(

2
1)()(

2
1)(

 (1) 

We can simplify this by finding the location (value of c) which maximizes the work done. 
This is done by using; 
 

 0=
∂
∂ EWD
c

 (2) 

 
When solving the above for c we get; 

 
⎟
⎠
⎞

⎜
⎝
⎛ −⋅=

L
bac 1

 (3) 
Substituting (3) into (1) , we get; 
 

 
⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅⋅=

L
bSbPEWD 1

 (4) 
 
 
 

a

bc

δ

 
Figure B.2. Shape of asymmetrical collapse.  
 
 
 
The internal work (IWD) per unit deflection includes the plastic work done by the shear 
panel, the 4 small plastic hinges in the flanges and the large plastic hinge at the far end. 
The equation is; 

 
⎟
⎠
⎞

⎜
⎝
⎛

−
−⋅+

−
+=

aLa
mp

aL
MpNIWD 12

 (5) 
 
where: 
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shear force in web: 3

yAwN
σ

⋅=  (6)

 
plastic moment in full frame: 

 
yZpMp σ⋅=  (7)

 
sum of local plastic moments 
in plate and flange: 

 
yzpmp σ⋅=  (8)

 
sum of local plastic section 
mod. 

 
flangeplate zpzpzp +=  (9)

 
local plastic section modulus 
of shell plate 

 

4

2tpSzp plate ⋅=  
(10)

 
local plastic section modulus 
of flange 

 

4

2tfwfzp flange ⋅=  
(11)

 
section modulus of frame  
(assumes NA at plate/web 
join) 

 

⎟
⎠
⎞

⎜
⎝
⎛ +⋅+⎟

⎠
⎞

⎜
⎝
⎛ ++⋅=

2222
tphwAwtphwtfAfZp  

 
(12)

 
 
Equating EWD with IWD gives an energy balance equation of : 
 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
−⋅+

−
⋅+⋅=⎟

⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅

aLa
kz

aL
ZpAw

L
bSbP y

121
32

1)( σ  (13) 

 
where: 
 
ratio of local to total moduli Zp

zpkz =  
 

(14)
 

 
The value of a will be that which minimizes the internal work. This is found by taking the 
derivative of IWD with respect to 'a' and setting it to zero. This gives;  
 

 
0121

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
−⋅+

− aLa
kz

aLda
d

 
(15) 

 
 
 
 
Solving (15) for a/L, we get; 
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[ ]kzkzkz

kzL
a

⋅+⋅⋅−⋅⋅
−⋅

= 2224
)1(2

1 2

  exact    (16) 
 
This is the exact solution. An approximate solution is; 
  

 3333.64. kz
L
a

⋅=   approximate        (17) 

 
 
When we plot the two equations, we see that (17) is a very good approximation to (16). 
Note that a/L is only a function of kz, so this comparison will hold for all cases.  
 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.1

0.2

0.3

approx
exact

zp/Zp

a/
L

 
Figure B.3. Comparison of exact and approximate values of a/L 
 
Now, we can write the energy equation as;  
 

⎥
⎦

⎤
⎢
⎣

⎡
⋅+⋅=⎟

⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅ fz

L
ZpAw

L
bSbP y 32

1)( σ

 

(18) 

  
where fz depends on a/L and kz.  fz can be expressed as exactly (substituting (16) into 
(13) and solving exactly), near-exact (substituting (17) into (13) and solving exactly) or 
approximately (fitting the exact solution to a simpler equation)). The exact solution for fz 
is: 

 ( ) ( )1222

2)1(
22

22

−−+⋅⋅−+

+⋅⋅−−
=

kzkzkzkzkzkz

kzkzkz
fz  (19) 
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The near-exact solution is (uses approx a/L); 
 

 ⎟
⎠
⎞

⎜
⎝
⎛

⋅−
+

⋅
⋅+

⋅−
=

3333.3333.3333. 64.1
1

64.
2

64.1
1

kzkz
kz

kz
fz  (20) 

 
The approximate solution for fz is;  
 
  (21) 7.75.51.1 kzfz ⋅+=
 
Equations (19), (20), (21) are plotted in Figure. The plot shows that all 3 equations are 
equivalent (<1% error). Again, as fz is only a function of kz, this comparison will be the 
same for all cases. 
 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 1 

1.5 

2 

2.5 

3 

exact  
near exact  
approx. 

zp/Zp

fz 

 

 
Figure B.4. Comparison of formulae for fz.  
 
 
 
 
 
The above derivations have enabled us to develop a relatively simple energy equation, 
which accounts for the optimal load and hinge locations. Figure shows that the 
simplifications have not diminished the accuracy of the solution. We can write the energy 
balance equation in the simple form; 
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⎥
⎦

⎤
⎢
⎣

⎡
⋅+⋅+⋅=⎟

⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅ )75.51.1(

32
1)( 7.kz

L
ZpAw

L
bSbP yσ

 

(22) 

  
We now wish to cast this equation in a non-dimensional form, compatible with the form 
of the interaction equations for the 3-hinge case. Equation (22) can be re-written as; 
  

 )75.51.1(

2
1)(3

2
1)(

1 7.kz
L

L
bSbP

Zp

L
bSbP

Aw

yy

⋅+⋅
⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅

+
⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
−⋅⋅

=

σσ

 (23) 

 
As in the case of 3 hinge , we define the minimum web area Ao: 
 

 
y

SbPAo
σ

3
2
1

⋅⋅⋅=  (24) 

 
We denote the minimum modulus as: 

 

 
L

L
bSbPZo

y

⋅⎟
⎠
⎞

⎜
⎝
⎛

⋅
−

⋅
⋅⋅

=
2

1
8 σ

 
(25) 

 
Using Ao and Zo, we can re-write the capacity equation as: 
 

 

)75.51.1(
8

2
12

1 7.kz
Zo

Zp

Ao
L

b
Aw

⋅+⋅
⋅

+
⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
−⋅

=

 

(26) 

 
which is simplified to: 

 

)75.51.1(
8

2
12

1 7.kzZn

L
b

An
⋅+⋅+

⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅

=

 

(27) 

 
where Zn and An are normalized values;  

 
Normalized modulus Zo

ZpZn =   
(28)

 
Normalized web area Ao

AwAn =   
(29)

By re-arranging (27), we get the interaction equation; 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅

−⋅
⋅+

=

L
b

An
kz

Zn

2
12

1
)75.51.1(

8
7.

 

(30) 

This interaction equation is a straight line. The y intercept is defined as Zmax, and the x 
intercept is Amax. The equation can be written as; 
 

 
⎟
⎠
⎞

⎜
⎝
⎛ −⋅=

max
1max

A
AnZZn

 (31) 
where: 

 
Maximum modulus )75.51.1(

8max 7.kz
Z

⋅+
=   

(32)

 
Maximum web area ⎟

⎠
⎞

⎜
⎝
⎛

⋅
−⋅=

L
bA

2
12max  

 
(33)

 
Note that the interaction diagram depends on Amax (which depends only on the 
patch/span ratio b/L) and Zmax (which depends only on the modulus ratio kz=zp/Zp). 
This allows us to add a kz axis to the y axis, and a b/L axis to the x axis.   
 
This interaction equation (31), shows some interesting properties. The equation is linear, 
meaning that an increase in web area will result in a constant decrease in the section 
modulus requirement. Two extreme cases (neither actually possible) involve a shear area 
of Amax, with zero modulus, or a section modulus of Zmax with zero web area. In the 
first case the entire load would be carried by the web (the plastic shear panel, with no 
load transmitted to the far end). At the other extreme, with no shear capacity, all the load 
would be carried by the far end, as a plastic cantilever beam. For all realistic cases the 
load is carried in three parts; the web to the near end, the flanges to the near end, and the 
full frame to the far end. A trade-off among the web, flanges and full modulus allow for 
various possible designs.   
 
Interaction Plot 
 
Interaction plot for shear is illustrated in figure B.5. Nine cases are illustrated to show the 
range of possible interaction equations for the shear mechanism. This plot would need to 
be combined with the 3-hinge (central load) interaction diagram to see the effects. The 
three hinge case will require Aw/Ao and Zp/Zp to both be greater than one. Two example 
3-hinge interaction curves are shown (a flat bar and a typical flanged frame). It is clear 
that there will be cases in which the shear mechanism will never govern. In the case 
where the load length covers most or all of the frame (b/L ~1), the shear curve will 
always lie below the 3-hinge curves. In the case of a very concentrated load, especially on 
a frame with small flanges, shear collapse will more likely govern.   

Derivation of Framing Requirements   7 



0 0 1.5.5 1
1 .8 .6 .4 .2 0

2 2.5

0

1

2

3

4

5

6

.025

zp
/Z

p

.03

.035

.04

.05

.06

.08

.1

.15

.20

.25

.30

Aw/Ao

b/L

Zp
/Z

po
zp/Zp=.025, b/L=0
zp/Zp=.025, b/L=.25
zp/Zp=.025, b/L=.5
zp/Zp=.05, b/L=0
zp/Zp=.05, b/L=.25
zp/Zp=.05, b/L=.5
zp/Zp=.15, b/L=0
zp/Zp=.15, b/L=.25
zp/Zp=.15, b/L=.5

shear
mechanism

3 hinge
mechanism

 
Figure B.5. Interaction Plot for asymmetrical shear collapse. The equation depends 
on the load patch length and on the ratio zp/Zp. 
 

 
 
The capacity equation is just a re-arrangement of (22); 
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Comparison with plastic FE analysis 
 
Two frames were analyses using non-linear finite element analysis. In both cases the 
patch load was applied near the edge: 
 
 

 
Figure B.6. Frames used for validation exercise. 
 
The FE load-deflection curves and the values calculated from equation (34) are shown 
below. The calculated values agree very well with the onset of large permanent 
deformations. For the 'DnV Frame' pressure was applied over 300 mm, while for the 
'KSRI Frame' the pressure was applied over 710 mm. It is also important to note that the 
DnV patch was 100 mm away from the boundary, while the KSRI load was at the 
boundary. It is likely that the KSRI values would have been a bit lower, had the patch 
been placed 100mm away from the support.  
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Figure B.7. Comparison of equations with finite element results. 
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Rule Equations 
 
The above formulations lead to a rule to check that adequate capacity exists to prent shear 
collapse with an asymmetrical load. By re-arranging (30) we have an additional formula 
for Zp, to augment the central load case in the UR 
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Annex C: Plastic Frame Capacity using FEA 
for Polar Shipping Rule Development 
 
 
Introduction 
 
The IACS Polar Shipping Rule Requirements (IUR) make use of plastic behaviour and plastic 
section properties for framing. As one aspect of the verification of the rules, a number of non-
linear finite element analyses of the plastic behaviour of frames have been conducted. Several sets 
of analysis have been conducted. For each set the load deflection curves are shown. The 
symmetric and asymmetric load cases are compared. All frames were modeled with fixed ends, 
and with symmetric boundary conditions on the long edges (as if the load patch covered several 
frames identically). As a point of comparison, the pressure required to cause first yield is included 
in several cases. The yield pressure was determined from the finite element analysis. 
 
Set 1 
 
Table 1 shows the load and geometric parameters for the first set of frames. These frames are 
nominally similar and approximately suitable for a 20 kT, PC6 in the bow region. The frames 
have the same shell plate, frame spacing and load height. The web and flange configuration 
varies. (see the excel spreadsheets for the design calculations for these frames). The term ps 
refers to the calculated shear capacity (in MPa) 
  
The following shows the load-deflection behaviour for 4 frames. The frame parameters are given 
in Table 1. The shapes are sketched in Figure 1. Figures 2 - 5 give the load deflection curves for 
the frames.  
 
Table C1. Parameters of frames in Set 1 

var var F4 F5 F6 F7 
load height [mm] b 928 928 928 928 
web height [mm] hw 402.00 463.00 481.00 494.00 

web thk. [mm] tw 15.42 14.19 14.74 15.16 
width of fl. [mm] wf 46.3 85.1 88.4 90.9 

fl. thk. [mm] tf 15.42 17.02 17.69 18.19 
plate thk. [mm] tp 20.5 20.5 20.5 20.5 
fr. spac. [mm] S 350 350 350 350 
fr. span [mm] lf 2000 2500 3000 3500 

fy [MPa] fy 235 235 235 235 
τy  [MPa] ty 136 136 136 136 

shear [MPa] ps 4.53 4.55 4.54 4.53 
3 hinge [MPa] p3h 4.67 5.07 4.89 4.59 
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Figure C1. X-sections of the 4 frames in Set 1. 
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Figure C2 Load-deflection curves for frame F4 
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Figure C3 Load-deflection curves for frame F5 
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Figure 4 Load-deflection curves for frame F6 
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Figure 5  Load-deflection curves for frame F7 
 
 
 
 
 
Set 2 
 
Tables 2 and 3 shows the load and geometric parameters for the second set of frames. These 
frames were developed to be suitable for a 30 kT, for all 7 classes in the bow region. (see the 
excel spreadsheets for the design calculations for these frames). The term ps refers to the 
calculated shear capacity (in MPa). The shapes are sketched in Figure 6. Figures 7,8, 9, 10 give 
the load deflection curves for four of the frames. Results are presented for the 4 cases highlighted 
in bold in Tables 2,3. 
 
Table 2. Parameters of frames in Set 2 (bow) 
30kT, Bow 
var \class C1 (PC1) C2 (PC2) C3 (PC3) C4 (PC4) C4a (PC4) C5 (PC5) C6 (PC6) C7 (PC7)

b [mm] 1220 1180 1120 1060 960 1010 1110 1000 
hw [mm] 620.8 547.3 511.8 484.1 409.9 444.3 411.6 345.3 
tw [mm] 37.5 37.8 21.1 15.8 21.6 13 11.3 10.2 
wf [mm] 187.3 138.8 147.8 142.3 108.1 142.8 124.1 143.2 
tf [mm] 31.8 31.9 27.5 22.9 21.6 22.1 20.3 19.9 
tp [mm] 37.5 30.8 26.4 22.6 21.6 20.0 17.4 15.7 
S [mm] 350 350 350 350 350 350 350 350 
lf [mm] 2500 2500 2500 2500 3250 2500 2500 2500 

fy [MPa] 355 355 355 355 355 355 355 355 
ty [MPa] 205 205 205 205 205 205 205 205 
ps [MPa] 20.94 18.00 10.48 7.79 7.88 6.21 4.56 3.83 

p3h [MPa] 22.32 19.47 10.55 7.98 7.61 6.44 4.72 4.04 
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Table 3. Parameters of frames in Set 2 (mid) 
 
30kT, Mid 

var C1 C2 C3 C4 C4a C5 C6 C7 
b 1040 1000 950 900 820 860 940 820 

hw 444.6 377.6 325.4 308.4 379.6 270.1 236.9 190.8 
tw 30.5 21.7 15.2 11.4 10.9 8.9 7.3 6.5 
wf 152.4 108.7 106.4 102.3 72.7 97.8 80.8 91.4 
tf 25.9 25 19.8 16.5 16.3 15.1 13.2 12.7 
tp 30.5 24.1 19 16.2 15.5 13.7 11.3 10 
S 350 350 350 350 350 350 350 350 
lf 2500 2500 2500 2500 3250 2500 2500 2500 
fy 355 355 355 355 355 355 355 355 
ty 205 205 205 205 205 205 205 205 
ps 13.12 8.08 5.06 3.75 4.21 2.66 1.74 1.41 

p3h 14.47 8.83 5.58 4.18 4.08 3.00 1.83 1.55 
 
 
 
 

C4am

Grid: 100 x 100 mm

C7bC4ab C7m
 

Figure 6. X-sections of the 4 frames in Set 2. 
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Figure 7 Load-deflection curves for frame C4ab (bow) 
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Figure 8 Load-deflection curves for frame C4am (mid) 
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Figure 9. Load-deflection curves for frame C7b (bow) 
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Figure 10. Load-deflection curves for frame C7m (mid) 
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