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SUMMARY 
 
The shell plating is one of the most important elements of ice strengthening structures; the correct 
regulation of its thickness is of high importance: if the requirements level is not insufficient, 
frequent repair is required (to remove the impermissible shell plating corrugation), if the 
requirements level is excessive, ship deadweight is decreased due to ice strengthening weight 
increase. It was shown during the Harmonization Process that there is certain reconciliation in the 
requirements to the shell plating thickness imposed by Canadian and Russian Rules: in both 
standard systems the ultimate strength criterion is used and the local character of the ice load is 
taken into account. This fact has made it possible to develop a validated analytic relationship for 
shell plating thickness definition basing on the consideration of the ultimate state of the locally 
loaded plate with account of the ice load peakness effect.  
 
REGULATION OF THE ICE STRENGTHENING SHELL PLATING PERMISSIBLE NET 
THICKNESS ON THE BASIS OF THE ANALYTICAL MODEL FOR PLATE 
TRANSITION INTO THE ULTIMATE STATE UNDER THE LOCAL ICE LOAD 
 
1. INTRODUCTION 
 
Below the method for regulation of the ice strengthening shell plating net thickness (i.e. the 
thickness less the abrasion - corrosion additions) is considered,. The separate Background covers 
the matter of the abrasion - corrosion additions. In order to define the permissible net thickness, 
the ultimate strength criterion is utilized. To describe the plate ultimate state, the kinematic 
method of the ultimate balance theory (UBT) [1, 2, 3] is applied. A plate in the ultimate state is 
simulated as a set of rigid parts connected by rectilinear plastic hinges formed by two-side corners 
of the plate surface kink [4]. The plate load is idealized with account of the peakness effect.  
 
2. THE ANALYTIC MODEL OF PLATE TRANSITION INTO THE ULTIMATE STATE 
UNDER THE LOCAL LOAD 
 
Let us consider a rectangular plate with sides s and l (s is a short side) fixed on the contour under a 
local load of intensity p, applied in compliance with the scheme in Fig. 2.1, a. It was mentioned 
above that in this case can be used the approximate version of the kinematic method of the 
ultimate balance theory based on introducing the concepts of rectilinear yield hinges formed by 
two-side corners of surface plate kink. The possibility of such approach application in problems of 
plates ultimate balance does not require additional justifications. 

The main difficulties of kinematic method application in problems with local loads are caused by 
definition of the plates failure true mechanism. Strict enough solution can be based on plate 
surface idealization in the form of the grid of possible yield hinges and further searching for the 
failed surface form and the ultimate load by application of the numerical procedure of linear 
programming. However, in the examined case the required accuracy can be reached on the basis of 
approximate specification of the failed surface form. 

It is familiar that at load distribution on all the plate field, the plate is failed by so called envelope 
(Fig. 2.1, b). The level of ice load localization on the plate’s field can be defined by the following 
relationship: 
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Fig.2.1 The scheme of ice load application to the ice belt shell plating plate and possible forms of plate 
deformed surface at its transition into the ultimate state 
a, c - local load; b - uniformly distributed load 
                   ,  •   lines of yield hinges 
        x                 edge hinges form defined from the condition of ultimate load minimum 
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  b S≥ ,  

where b is the ice load distribution height. 

If ice load is local, is possible the failure in the envelope form distributing on the part of the plate 
surface (Fig. 2.1, a) with forming edge yield hinges (not coinciding with the supporting contour). 
At the strict approach, the form of the edge hinges is defined on the basis of the extreme principles 
of the ultimate balance theory from the condition of the plate ultimate load minimum. However, 
special assessments show that for the practical use rectilinear edge hinges are permissible to be 
specified (Fig. 2.1.a), as far as in this case an error in ultimate load definition does not exceed 
several percents, and the final solution is simplified appreciably. Therefore, further the plate 
deformed surface (plastic hinges) is examined in the envelope form with rectilinear yield hinges; 
the envelope length m satisfies the following condition (Fig. 2.2): 

  .lmb ≤<                                      (2.1) 

At the specified plate size and load form, the geometry of the deformed surface is defined 
completely by specification of two parameters: length of the failure area m and height of the 
triangular sector n (see Fig. 2.2). The values of these parameters, as well as the ultimate load 
(pressure) value pu are defined within the procedure of the kinematic method reducing to analysis 
of external and internal forces work for the plastic mechanism varied kinematically (Fig. 2.2) on 
displacement (deflection) f. 

Presence of problem symmetry permits to be limited by examination of sector ABCD 
displacement. 

Internal forces work in the plastic hinge is calculated by the following familiar relationship: 

  T
FYt

di i i= −δ θ
2

4
    (2.2) 

where  δ =
2
3

,  

 i is a plastic hinge number; 

θ i  is an angle of the kink in the i-th plastic hinge; 

 di  is the length of the i-th plastic hinge. 

Let us accept the following hinges numeration: 

AB-i=1;  BC-i=2;  DO-i=3;  OB-i=4 

 

then         θ1 1 05= =
f
n

d S; . ;                      

              θ2 205
0 5= =

f
S

d m
.

; . ;    (2.3) 

θ3 305
05= = −

f
S

d m n
.

; .  
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Fig.2.2 The form of plate deformed surface with rectilinear edge hinges 
• ,                     lines of yield hinges lines of yield hinges 
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To calculate θ4 , a straight line EF BO⊥  was drew through point O. From geometrical 
consideration we have the following (Fig. 2.2) 
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+
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f
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f
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f
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S
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.
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 (2.4) 

The full work of the plastic forces in the hinge is as follows: 

            T Ti
i

= −∑       (2.5) 

Substituting relationships (2.2) - (2.4) into (2.5), the following is obtained: 

 T FY t
f S

n
m
S

= − ⋅ ⋅ ⋅ +
⎛
⎝⎜

⎞
⎠⎟δ 2

2
05.

   (2.6) 

External forces work on deflection f of the kinamatic mechanism is as follows: 

           V p W x y dFu
F

= ∫ ( , ) ;      (2.7) 

where 

pu  -  is the ultimate pressure; 

W x y f x y( , ) ( , )= ⋅ ϕ  is plate deflection in a point with coordinates (x, y); 

ϕ( , )x y ≤ 1 is the piece-linear function; 

F is the area of the plate’s deformed part. 

 

Let (Fig. 2.3) 

 

F F F FABO BOH HODC= + +    (2.8) 

 

Integrals on areas  F F FABO BOH HODC, ,  are calculated from the following obvious relationships 
(Fig. 2.3): 
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Fig.2.3 Computation of external forces work  
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−
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External forces full work is as follows: 
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By the kinematic method methodology, the equations system relatively the unknown parameters 
m, n and pu is as follows: 

( ) ( ) ( )∂
∂

∂
∂

∂
∂

T V
f

T V
n

T V
m

+
=

+
=

+
=0 0 0; ; .       (2.13) 

Substituting here expressions (2.6), (2.12) and differentiating, we obtain the following expressions 
after elementary manipulation: 

( )
δ m

n
p m

n m b
n

m b
n

+
⎛
⎝⎜

⎞
⎠⎟ − − +

−
−

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

1
0 25

3 3
0

3

2

2

.
( )

 

δ − −
−⎛

⎝
⎜

⎞
⎠
⎟ =0 25 1 0

2

. p
m b

n
         (2.14) 

δ
n

p
m b

n
m b

n2

3 2

0 25
1
3

2
3

0+ +
−⎛

⎝
⎜

⎞
⎠
⎟ −

−⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=.   

where  

m
m
S
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n
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=

05.
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p S
FYt

u=
2

2 ;    δ =
2
3

 

The results of numerical solution of nonlinear system (2.14) are cited in Fig. 2.4. 

It follows from the data of Fig. 2.4 that the failure area length m only slightly exceeds the load 
application area height b, and at  
         b m b→ ∞ →;  

Let us obtain the approximate problem solution basing on the following assumption  
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Fig.2.4 Function of the ultimate state parameters versus the relative height of the load application area 

                        numerical solution of system (2.15) 
                                     approximate solution of (2.18) at m b=  
                                     approximation formula (2.20) 
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m b=           (2.15) 

It gives 
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     (2.16) 

The (2.16) solution is as follows 

  p
b b

= + +
⎛

⎝
⎜

⎞

⎠
⎟4

1
3

1
3

12

2

δ ,        (2.17) 

n
p

=
12δ          (2.18) 

Taking into account the fact that normally for ice going ships 

 ,1
b3
1

2 <<  

the following can be written instead of (2.17) 

  p
b

= +
⎛
⎝⎜

⎞
⎠⎟

4 1
1
3

2

δ ,         (2.19) 

Formula (2.19) gives the results coinciding with the numerical solution (2.14) with accuracy of 
1.2% (see Fig. 2.4, a). 

At the same time, the data of Fig. (2.4, a) characterize clearly the factor of ultimate pressure 
critically increase and decrease of the load distribution height.  

It is familiar that the kinematic method gives the increased assessment for the ultimate load. 
Hence, solution of (2.14) based on the hypothesis of rectilinear plastic hinges results in an error 
always directed in the dangerous side. Therefore, preparing the RR regulation requirement to the 
shell plating thickness basing on (2.19), it was decided to use more caution assessment in order to 
weaken parameter b  influence upon the ultimate load. 

Equally with this it was taken into consideration that in the old Russian Rules coefficient δ  was 
ignored at shell plating thickness regulation. Therefore, preparing the standing Russian Rules and 
IACS UR Draft, in order to provide for succession in the relationship of the requirement to the 
shell plating and framing, it was decided to ignore this factor as well. In the result, the formula for 
the ultimate load (2.19) takes the following form: 

  p
b1

2

4 1
05

= +
⎛
⎝⎜

⎞
⎠⎟

.
,                                                (2.20)  

In the typical area of parameter b = ÷1 3 variation the following relationship between magnitudes 
p  and p1 take place: 
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 ( )p p1 0 8 0 85= ÷. .                                                 (2.21) 

Therefore, in the IACS UR requirements is put down the more cautious assessment of shell plating 
ultimate strength, than it follows directly from the described theoretic solution. 

Such a decision seems to be justified enough as far as the actual plate loads are characterized by 
the highest changeability. 

It should be also noted that the obtained solution is based on consideration of the form of the plate 
deformed surface cited in Fig. 2.1, a. At small distribution heights b another form of the deformed 
surface is possible when the yield hinge in the plate center is oriented perpendicularly to the plate 
long edges (Fig. 2.2, c). With account of this, formula (2.20) takes the following form: 

  ,c4p 2
1 =                                (2.22) 

⎩
⎨
⎧

<+
≥+

=
1batb/15.0
1batb/5.01

cwhere  

It should be noted that  in the area 

s5.0b <   

relationship (2.22) results in an appreciable error. However, so small load distribution heights are 
not met practically and there is no necessity in (2.22) further refinement. In the UR the 
requirement to the shell plating thickness is generated on the relationship (2.21), as far as 
condition  sb >  is practically always valid. The resultant function for the shell plating thickness is 
as follows: 

  

b
s5.01

1
FY
ps5.0t ice

+
⋅=         (2.23) 

 
In order to consider the ice load pattern peakness, the peakness factor PPF is introduced. To take 
the frames (transverse framing, longitudinal framing, inclined frames) orientation into account, the 
orientation factor OF is introduced into the regulation relationship. In the result the formula for the 
net thickness takes the following form: 

  

l
s5.01

1
FY

pPPFOFs5.0t net
+

⋅
⋅

⋅=       (2.24) 

Relationship (2.24) differs from the regulation formula of the IACS UR Draft by notation and 
dimensional representation. 
 
3. CONCLUSION 
 
Applicability of relationship (2.24) for regulation of the ice strengthening shell plating thickness 
within the IACS UR (with account of the abrasion - corrosion additions) was verified by numerous 
comparisons with the requirements contained in the Russian, Canadian and Finnish-Sweden Rules. 
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The obtained regulation relationship provides the high level of service reliability at minimal metal 
consumption and deadweight loss.  
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