
A Technique for Specifying Interface Modules for Real-Time

Systems

Yingzi Wang and Dennis K. Peters

Electrical and Computer Engineering
Faculty of Engineering and Applied Science

Memorial University of Newfoundland
St. John’s, Newfoundland

Canada
E-mail: wang@engr.mun.ca, dpeters@engr.mun.ca

Abstract

Documentation plays a key role as a component of
design process, and a preview of a task before it comes
to be executed. A well-specified task might not take
less implementation time than one without documents,
but one of the obvious advantages is that misunder-
standings are avoided and readable specification makes
it easy for the successive developers to exploit or modify
the software or hardware design. Such merit is partic-
ularly useful for aviation and military applications in
which reliability and maintainability are very important
aspects for judging the success of a project.

Interface Modules (IM) are modules that encapsu-
late input or output device hardware and the related
software, so that the application software can be writ-
ten without specific knowledge of the particular devices
used. Replacing or modifying an interface device will
only lead to changes in the IM, rather than changing
the other modules in the whole system. In real-time and
embedded systems, an IM will often relate real-valued
external quantities (e.g., time, positions in space) with
discrete valued software quantities. An IM specifica-
tion must therefore use a combination of notations and
formalisms.

In this paper, we present a technique for IM spec-
ification that is an extension of the System Require-
ments Documentation technique presented in [1], which
is based on the Software Cost Reduction (SCR) method.
An IM is specified as a “sub-system” that interacts with
both the external environment and other software mod-
ules in the larger system. The interface quantities are
modeled as functions of time and the behaviour is de-
scribed in terms of conditions, events and mode classes.
This technique facilitates concise and formal descrip-

tion of the module behaviour, including tolerances and
delays.

Keywords: device interface module, module specifica-
tion, real-time system

1 INTRODUCTION

Documentation is an essential product of the design
process, and plays several key roles. For example,

• a requirements specification can provide an
overview of the system before it is implemented;

• a complete and precise system design document
can be used to help determine the feasibility of the
system, or to verify other essential system proper-
ties;

• accurate and precise documentation improves
maintainability and reliability by acting as a guide
and reference for current and future developers;
and

• precise specifications can be used to help to detect,
isolate and remove faults earlier in the project life-
cycle, which reduces costs.

Inadequate documentation causes software quality to
degrade over time because the changes are inconsistent
with the original(undocumented) design concept; such
changes result in unnecessarily complex programs.

To reduce the complexity of the system, a system
can be decomposed into a set of modules, each of which
performs a certain task in the system.[2] These mod-
ules can be implemented by individual developers with-
out communicating with others very often, for the task

Proceedings of the 2002 IEEE Canadian Conference
on Electrical & Computer Engineering
0-7803-7514-9/02/$17.00 © 2002 IEEE

- 709 -

is defined explicitly in the documents of the module
specification. A well-specified task might not take less
implementation time than one without documents, but
one of the obvious advantages is that misunderstand-
ings are avoided and readable specification makes it
easy for the successive developers to exploit or modify
the software or hardware design. Such merit is par-
ticularly useful for example in aviation and military
applications which consider reliability and maintain-
ability very important aspects judging the success of a
project.

A real-time system is a system that must produce
its results within specified time intervals. Common ex-
amples of real-time systems include flight control pro-
grams, patient monitoring systems, and weapons sys-
tems. To be acceptable the behaviour of such systems
must not only to be functionally correct, but also be
temporally correct—satisfying the timing constraints.

1.1 Interface Modules

Interface Modules (IM) are modules that communi-
cate between the application software and the environ-
ment in which it operates.[3, 4] They typically encap-
sulate software and hardware that implement an inter-
face with either human users (i.e., a human-machine
interface) or some other environmental quantity (e.g.,
temperature, robot arm position). Since environmen-
tal quantities may be either continuous or discrete, but
software quantities are discrete, the IM is classed as a
“hybrid” system.

An interface module reduces the complexity of the
system design by isolating the interface details from
the rest of the system software. This is particularly
important in embedded systems, where the IM will of-
ten contain special purpose hardware devices (e.g., ac-
tuators or sensors): replacing or modifying a device
should only lead to changes in the IM, rather than re-
quiring changes to other modules in the system. If in-
terface hardware is not explicitly encapsulated, when
a device changes, programs depending on it will also
need to change, so the change could have surprising
and widespread ramifications.

Consider, for example, a system for making signs
that uses a robotic arm as illustrated in Figure 1. As
illustrated, the system consists of three modules (each
of which may be sub-divided into other modules): User
interface, processing, and robot interface. The User
interface and robot interface modules are both exam-
ples of interface modules, which isolate the process-
ing software from the specific details of the input or
output device hardware and software. If, for example,
the mechanical properties of the robot arm were to be

Software

Processing

Serial I/O

Robotic arm
User

Interface

Robot

Interface

Figure 1. Robot System

Form Meaning
cx Controlled variable
mx Monitored variable

Mdx Mode
Clx Mode class
Cx Constant
px Condition

Table 1. Identifier Annotations

modified, it would probably require that the software
controlling it also change. The robot interface module
limits the impact of these changes.

The ideal Interface Module will:

• be the only component that needs to change if the
devices change;

• not need to change unless the devices change;

• be relatively small and simple structured so that
it can be easily changed if necessary.

Section 3 is a specification of an interface module
for controlling a robotic arm, similar to that illustrated
in Figure 1. The arm has five motors to position the
tip and open or close the ‘hand’, and is controlled by
software on a PC via a serial link. For this illustra-
tion we will consider the tip position in two dimensions
only, carmPos (the position on a drawing surface), and
a Boolean, carmUp, to represent if the tip is above the
surface or touching it.

Throughout this paper we use superscripted annota-
tions as described in Table 1 to help clarify the meaning
of identifiers.

2 SPECIFYING INTERFACE
MODULES

Interface Module Specifications (IMS) are compo-
nents of the System Design Document, as described in
[1, 5]. Each treats a module as a “black box”, iden-
tifying those programs that can be invoked from out-
side of the module(access programs), and describing
the externally-visible effects of using them. Like other
module specifications, the IMS tells the module de-
signer what behaviour is required of the module, and

- 710 -

allows it to be implemented without communicating
with other module designers. Also the IMS can be
used to verify that the module internal design is cor-
rect. Designers of other modules in the system can
use the IMS to understand what behaviour they can
expect from the module. As a part of system design
process, the IMS and the system architecture can be
used to verify that the design satisfies the system re-
quirements.

Since interface modules interact with both other
software modules and the environment external to
the system, they are examples of hybrid systems,
which contain both discrete and continuous compo-
nents. Thus, they present new challenges for spec-
ification. Previous work [6], outlines a method for
specifying interface modules by extending some of the
notation for System Requirements documentation pre-
sented in [1] to allow the IM to be viewed as a system
in the sense of that work. This paper extends [6] to
consider real-time behaviour of the interface module.

2.1 Module Interface

As stated in [1] environmental quantities are quan-
tities that are external to the system, “independent
of the chosen solution and are apparent to the ‘cus-
tomer’.” From the point of view of the IM, the ‘cus-
tomer’ is the designer of the software that will use
the IM to communicate with the external environment,
and the quantities of interest are both internal (soft-
ware) and external quantities. The internal quanti-
ties are software quantities that form the interface be-
tween the IM and other system modules, including, for
example, parameters to access programs. The exter-
nal quantities are the environmental quantities relevant
to the system and represent such things as tempera-
ture, switch settings, or the position of a robot arm.
All these quantities can be represented by functions of
time. Note that for real-time systems, time, itself, is a
relevant environmental quantity.

The IMS must describe the behaviour of the IM in
terms of these quantities. We divide the quantities
into two, not necessarily disjoint, sets: the controlled
quantities are those that the IM may change the value
of, and the monitored quantities are those whose value
may effect the current or future behaviour of the IM.
The IMS, then, must give the value of the controlled
quantities depending on the current and past values of
the monitored quantities. The interface to the robotic
arm module is given in Section 3.1. Note that, im-
plicitly, the input parameters of access programs are
monitored quantities, and output parameters and re-
turn values are controlled quantities.

2.2 Conditions, Events and Mode Classes

The relevant properties of the monitored and con-
trolled quantities can often be succinctly characterized
by predicates, called conditions, which are Boolean
functions of time defined in terms of the monitored
and controlled quantities. For an interface module ac-
cess program, we use the access program name and
parameters to denote the condition that is true only
when the access program is executing. For example,
if foo is an access program then foo(x) is true if and
only if foo is executing, and foo(x) ∧ x < 0 is true if
and only if foo is executing and its parameter was less
than 0 when it was called.

The instants when conditions change value are sig-
nificant to the behaviour of the system, and these in-
stants are referred to as events. Formally, an event e,
is a pair (t,c), where e.t is a time at which one or more
conditions change value and e.c denotes the status (i.e.,
true, false, becoming true, becoming false — denoted
T,F,@T,@F, respectively) of all conditions at e.t. For
real-time systems, the amount of time between events
will be relevant to the module behaviour.

The history that is relevant to the behaviour of a
module can thus be described by the initial conditions
and the sequence of events that have occurred since
the initial state. It is often the case that many histo-
ries are the same with respect to current and future
behaviour, so we group these together into a mode. A
set of modes that partition the possible histories —
forming an equivalence relation on the set of histories
— is known as a mode class. If the behaviour is spec-
ified for every mode in a mode class, then it is fully
specified.

Sections 3.2 and 3.3 describe the mode classes
for the robotic arm module. Mode class ClMotion
relates to the motion of the robot arm. The
initial mode is Mduninitialized. When the event
@T (moveInitialPos()) occurs (i.e., the ac-
cess program is called), the IM enters the
mode MdmovingTo(CXi,

CYi, true)—the arm is
moving toward its initial position. Similarly,
@T (moveLinear(x, y, u)) initiates movement to-
wards the postion (x, y, u). When the arm reaches its
destination, @T (ponPosition(x, y, u)) occurs and the
IM enters mode Mdstopped(x, y, u)—it is stopped at
that position.

Mode class ClGripper relates to the opening and clos-
ing of the gripper. The mode change is initiated by ei-
ther @T (graspGripper()) or @T (releaseGripper()),
to close or open the gripper, respectively. The
mode changes to Mdgrasped or Mdreleased when
the access program returns (@F (graspGripper()) or

- 711 -

@F (releaseGripper()))—indicating that the call will
not return until the gripper has completed the opera-
tion.

2.3 Controlled Value Functions

The behaviour of the IM is thus described by giv-
ing the values of the controlled quantities in terms of
the history relevant to the module. The characteristic
predicate of the acceptable values of controlled values
is given using the standard predicate and relational op-
erators and tabular expressions. These are expressed
in terms of the previous behaviour, current mode in
one or more mode classes, and condition values.

In Section 3.5 the value of controlled quantities are
specified in terms of each mode in the relevant mode
class. The controlled quantities carmPos, carmUp are
defined in terms of ClMotion, and cgripPres is defined
in terms of and ClGripper.

2.4 Timing Constraints

In real-time systems, time relative to some initial
time is always a monitored variable, and the elapsed
time between some events will be constrained by the
specification. For a condition p, Drtn(p, t) denotes the
duration of time that p has been continuously true until
current time t.

In Section 3.5, the amount of time that the arm is
permitted to take to reach its destination is constrained
by the expression Drtn(MdmovingTo(x, y, u)) ≤
CMOVE TIME in the first table. Thus the real-time
requirements on this module are specified.

3 EXAMPLE: ROBOT ARM
MODULE

3.1 Module Interface

Access Programs
Name Parameter Types
moveInitialPos
moveLinear int, int, Boolean
graspGripper
releaseGripper

Environmental Quantities

Variable Description Value Set
mt current time Real
carmPos position of the arm

tip(x, y in mm)
Real×Real

carmUp true if the tip is not
touching the surface

Boolean

cgripPres pressure applied by the
gripper (Pa)

Real

3.2 Mode ClassClMotion

Modes : Mduninitialized, MdmovingTo(x, y, u),
Mdstopped(x, y, u)

Initial Mode : Mduninitialized

Transition Relation :

pT : H1 ∧G
rT : H3

Decision m
o
v
e
I
n
i
t
i
a
l
P
o
s
()

p
on

P
os

it
io

n
(x

,y
,u

)

m
o
v
e
L
i
n
e
a
r
(x

,y
,u

)

Mduninitialized @T ∗ ∗
MdmovingTo
(CXi,

CYi, true)
MdmovingTo(x, y, u) ∗ @T ∗ Mdstopped(x, y, u)
Mdstopped(x, y, u) ∗ ∗ @T

MdmovingTo
(x, y, u)

Maximum Delay : cRT MOVING

3.3 Mode ClassClGripper

Modes : Mdgrasping, Mdgrasped, Mdreleasing, Mdreleased

Initial Mode : Mdreleased

Transition Relation :
Mode Event New mode
Mdreleased @T (graspGripper()) Mdgrasping
Mdgrasping @F (graspGripper()) Mdgrasped
Mdgrasped @T (releaseGripper()) Mdreleasing
Mdreleasing @F (releaseGripper()) Mdreleased

Maximum Delay : cRT GRIPPER

3.4 Conditions

ponPosition : Real×Real×Boolean → Boolean
ponPostion(x, y, u)

df= |carmPos.x− x| < Cε∧
|carmPos.y − y| < Cε∧
carmUp = U

- 712 -

3.5 Controlled Value Functions

(carmPos, carmUp)

|

pT : H1

rT : H2 G
Vector

carmPos | carmUp =

Mduninitialized
∣∣ d
dt (

carmPos)
∣∣ = 0 true

Mdstopped(x, y, u)
∣∣ d
dt (

carmPos)
∣∣ = 0 u

MdmovingTo(x, y, u)
d
dt (|carmPos− (x, y)|) < 0 ∧

Drtn(MdmovingTo(x, y, u)) ≤ CMOVE TIME
u

cgripPres

|

pT : H1

rT : H2 | G
Vector

cgripPres

Mdreleasing d
dt (

cgripPres) < 0
Mdreleased d

dt (
cgripPres) = 0 ∧ cgripPres = 0

Mdgrasping d
dt (

cgripPres) > 0
Mdgrasped d

dt (
cgripPres) = 0 ∧ cgripPres ≥ CGRIP PRES

3.6 Constants

Constant Description Range
CXi Home x position

(mm)
(−10, 10)

CYi Home y position
(mm)

(0, 20)

Cε Tolerance on posi-
tions (mm)

(0, 2)

CRT MOVING Maximum delay on
mode class ClMotion
(s)

(5, 10)

CRT GRIPPER Maximum delay on
mode class ClGripper
(s)

(0, 5)

CGRIP PRES Pressure applied by
the gripper (Pa)

(15, 18)

CMOVE TIME Maximum moving du-
ration (s)

(30, 35)

CARM RATE Maximum moving
rate (mm/s)

(5, 8)

3.7 Environmental Constraints

The following assumption can be made for environ-
mental quantities in addition to the range limits on the
constant values given in the above table.∣∣ d

dt (
carmPos)

∣∣ ≤ CARM RATE

4 CONCLUSIONS AND FUTURE
WORK

This paper has briefly illustrated a technique for in-
terface module specification using notation similar to
that presented in [1]. The use of events and mode
classes provides a foundation for concise descriptions
of the required behaviour. Since events are instants,
we can express real-time aspects of the behaviour using
simple constraints on the time elapsed between events.

Application of these techniques to the specification
of other interface modules will further illustrate their
usefulness and may allow us to draw more conclusions
on specifying real-time systems.

Acknowledgments

We are thankful to the our colleagues in Electri-
cal and Computer Engineering at Memorial Univer-
sity, and in particular to An Zhiwei for many insight-
ful discussions. The Natural Sciences and Engineering
Research Council and the Faculty of Engineering at
Memorial University have supported this work.

References

[1] D. K. Peters, Deriving Real-Time Monitors from
System Requirements Documentation. PhD thesis,
McMaster University, Hamilton ON, Jan. 2000.

- 713 -

[2] D. L. Parnas, “On the criteria to be used in de-
composing systems into modules,” Communica-
tions ACM, pp. 1053–1058, Dec. 1972.

[3] D. L. Parnas, “Use of abstract interfaces in the de-
velopment of software for embedded computer sys-
tems,” NRL Report 8047, Naval Research Labora-
tory, June 1977.

[4] K. H. Britton, R. A. Parker, and D. L. Parnas,
“A procedure for designing abstract interfaces for
device interface modules,” in Proc. Int’l Conf. Soft-
ware Eng. (ICSE), pp. 195–204, 1981.

[5] D. L. Parnas and J. Madey, “Functional documen-
tation for computer systems,” Science of Computer
Programming, vol. 25, pp. 41–61, Oct. 1995.

[6] Y. Wang and D. K. Peters, “Interface module spec-
ifications for real-time systems,” in Newfoundland
Electrical and Computer Engineering Conference
(NECEC), IEEE, Newfoundland and Labrador Sec-
tion, Nov. 2001.

- 714 -

