Arrays Pagel of 8

Up to now, variables have only held a single value. Single valued varablesid to becalar.

Now we introduce one of the two kindscompound variables, that isvariables which can hold
multiple values.

An array is designed to holdomogeneous values. That isgvery value in an array is of the same type.

For example—

inta;

int c[10];

double x[22];
string names[30];

While a is a conventional (scalar) integer, we would say
c is an array of 10 integers.
x is an array of 22 doubles
names is an array of 30 strings

The size, odimensionality, of the array must be declared so ttatnpiler knows how much storage to
set aside.

Element Reference

We can access individual elements of an array viadax, like so—
c[3] = 13;

x[20] = x[17] - x[3];
cout << names|[0];

Notice that the "first" element of the array actually has i 0. The implication is that there is no such
thing asc[10] , x[22] or names[30] .

The indices of an array of size n run from 0tb.n

Initialization of Arrays

Arrays are initialized using anitialization block
inta=3;

int fib[10] = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55};
int daysinMonth[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

It is often easier to represent irregular data such as the number of day®ith in a table like this th
to write an algorithm to try to generate theta (of course we'll still need an algorithm to handle leap
years).

Note that it is not necessary to initialize every element of an

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/arrays.htm 2004.03.24

Arrays Page2 of 8

int a[10] = {4, -5,7, -11,9}
initializesal0] througha[4] while leavinga[5] throughal9] uninitialized.
As you might expect, specifying too many elements (overspecifying)asmailetime error.
Array Storage

When we diagram how an array get's stored in memory, it looks a lotdikeaam (in fact we started
with the stream drawing).

3 |-M1M|17 (3 | 4|5 7|10 0] 9 [17] -8

0 [[2 (81 [(5 (6] [71 (8 [9 [100 [11] [12] [
The elements in an array are stored adjacent to one another much as itheysaream. There are a
couple of important differnces however.

1. A stream contains characters. We can have arrays of any legitimatyge+at all, the only

condition is that every element in a particular amayst be of one type.

2. A stream is accessed sequentially, using a pointer that startdagiheing and moves through

the stream, element by element.

3. An array is accessed directly, simply by specifyingitidex of the desired element (this is

actually what is meant by the teneandom access).

Basically, streams are like video tape where you have to move througipéh® get to the scene you
want while arrays are more like DVD's, allowing ytoucut directly to the desired element.

In the figure above we see an arraynofs. The element andex6 is 7, while that atl1 is17.

Be careful with arrays of int s that you don't mix ugheindex or position of an element (which is
always arint for any kind of array) with thealue storedin the element.

Formal Syntax

The formal syntax for an array declaration is
Array declaration :

Form:

Type Identifier[sizq;

Type Identifier[sizg = {Initialization-list};
Example:

int marks[30];
char letterGrades|[5] = {'F','D','C','B','A'};

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/arrays.htm 2004.03.24

Arrays Page3 of 8

Interpretation: space is created forarks , anunitialized array of 30 integers, and fetterGrades
an array ob chars witHetterGrades[0] initialized to'F' , letterGrades[1] initialized to'D'’ and
so on.

Let's see arrays in action

E T RUN average.cpp

int main(){
float numbers[10];
float sum= 0;

int i; /I array index
/I Fill up the array
for (i= 0;i< 10; i++)
numbersli] = fabs(sin(2*3.14159 *i/ 10));
cout << "There are 10 numbers as follows: " << endl;
for (i= 0;i< 10; i++) {

cout << numbers][i] <<
sum += numbersi];

}

cout << “\n\nTheir average is " <<sum/ 10 <<endl;
return O;

One significant problem with this example is the repeated use of the 1lieralis much better to make
this a constant, as follows:

const int SIZE= 10;

average_better.cpp

int main(){
float numbers[SIZE];
float sum= 0;
int i /I array index

/I 'Fill up the array

for (i= 0;i < SIZE; i++)
numbers]i] = fabs(sin(2*3.14159 *iSIZE));

cout << "There are " << SIZE << " numbers as follows: " << endl;
for (i= 0;i < SIZE; i++) {

cout << numbers][i] <<
sum += numbersl[i];

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/arrays.htm 2004.03.24

Arrays Paged of 8

}

cout << “\n\nTheir average is " << sum/SIZE << end|;
return O;

This example shows the real advantages of constants over literals. Nhwantge our array size we
only have to make a single change. Using literalsn(#ise first example) we would have to make lot
them (everywhere SIZBppears, in fact).

Of course, the moment one sees the above, it makes you want to-€o this

B o=

int main(){
int size;
float sum= 0;
int i; 1 array index

average_illegal.cpp

cout << "Please input the size of the array: "
cin >> size;

float numbers[size];

/I Fill up the array

for (i= 0; i < size; i++)
numbers]i] = fabs(sin(2*3.14159 *ilsize));

cout << "There are " << size << " numbers as follows: " << endl;
for (i= 0; i < size; i++) {

cout << numbers[i] <<
sum += numbers[i];

}

cout << “\n\nTheir average is " << sum/size << endl;
return O;

Unfortunately, you can't. The compiler will complain. So will the TeacMaghine.Array size cannot
be variable. It must be known at the compitine (because the compiler has to set space aside in
memory for the array).

Passing Arraysto Functions

Passing arrayisy value is problematic because passing by vallveays implies making a copy and
copying large arrays

1. is slow
2. doubles the memory usa

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/arrays.htm 2004.03.24

Arrays Page5 of 8

Thus we would like to pass arrays as we do objects, that is by reference.

Actually, they are technically passed by address because arraysosigireal feature of C and C didn't
have pasdy-reference. The difference ybur stage is not worth worrying about except to point out
that—

arrays are not objects. They predate objects.

Let's move our averaging operation into a function where it should be.

E average_function.cpp

float average(float data[], int size){
float sum= 0.;
for (int i= 0;i<size;i++)
sum += datali];

return sum/size;

Theprototype for the function
float average(float data[], int size)

containstwo parametersiata is declared to be amray of float s. The seconalt parametersize ,

is passed in to say how large the array is. This is denause the data array is not an object and does

not know its own size.
The compiler knows the size of an array when it is created, but thattfersdme thing.

To see why not consider a program where we want the average of two diffieesst

10;
5;

average_function.cpp

const int SIZE_S=
const int SIZE_C=
int main(){

float sines[SIZE_S];

float cosines[SIZE_C];

int i /I used to index through arrays

/I Fill up the arrays

for (i= 0;i < SIZE_S; i++)
sinesli] = fabs(sin(2*3.14159 */SIZE_S));
http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/arrays.htm 2004.03.24

Arrays Page6 of 8
for (i= 0;i < SIZE_C; i++)
cosines[i] = fabs(cos(2*3.14159 *ISIZE_C));
cout << "The average of the sines is " ;
cout << average(sines, SIZE_S) << endl;
cout << "& the average of the cosines is "

cout << average(cosines, SIZE_C) << endl;

return 0;

Although this example is somewhat artificial, it serves to make the point

Two different arraysines andcosines have beerreated each with its own size. Since the sizes
SIZE_S andSIZE_C are constants, the compiler knows how much space to aliocaemory for each
of the two arrays.

Averaging, however is carried cattrun time. Theaverage function gets called twice, once for each
array. Ithasto be able to accommodate both sizes, thusitbe argument is variable.

Sear ching and Sorting

Arrays are commonly used to store large amounts of homogenous dategrfggle telephone
directories or corporate sales figures,

Thus a common task is to search an array for a particular piece of datatarveth a particular
characteristic.

Problem: build a function to find theosition of the largest piece of data in an array of doubles.
Analysis:

Clearly a loop is involved since I'll have to search the eatir@/—andfor loops are a good match for
arrays

concentrate on the body of the loop, assume | know the postitibe largest piece of data so far
We'll hold that in a variable callgsbsiton, ~ sowe should get something like
fori=0,i<arraysize
if data[i] > data[position]
position =i
Now all we have to do is get it star—how about we sgiosition to 0?

Header: int getLargest(double data[], int size)

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/arrays.htm 2004.03.24

Arrays Page7 of 8 Arrays

Algorithm: Major Data:

set position to 0 int MAX_CLASS_SIZE
float grades[MAX_CLASS_SIZE]

fori=1,i<size // Noticeadjustment to get started
Headers:

If datali] > data[position] int getGrades(float gradeData[], int maxSize) // return actual size
Y- . void sort(float gradeDatal[], int size)
position =i

Algorithm:

Read valuesint des{0..N-1
Question: What happens if there are two or more largéstes of data? Where will ead valuesinto grades|]

= b . o - .
positon end up? Is this sensible~ Sort gradesin increasing order

Final Comment: in working with problems like this we have be careful to distinguish

P L . . if Niseven
between the@osition in the array andthedata at the position. That is, between_ t_Hecatlon
of the data and theactual data. Here we compare the data, but we trémekposition. median = (valgN/2-1] + vals[N/2]) / 2
else
Median Problem median = valgN/2]

Problem: Find the median grade for a class whose dagtoi®d in a file. Final Comment:

Analysis: Why N/2 in the last line?

1. We're going to need an array to hold the grades. How big sihbelel If N is odd, for example 5
If we want to handle different classes, we won't know the class sizeventiad the data in
from the file (which is when weun the program)But we have to size the array when we
build the program.

e There are 5 elements in the array
e They arenumbered from O to 4

e The middle oneisno 2 (0, 2, 3, 4)
L]

N/2 is of course 2
One approach is to create an array large enough to handle any reastaisalbdeze and then

only use part of it. We'll also have to watch out fatass bigger than we planned for.

Page8 of 8

. This page last updated on Wednesday, March 24, 2004
So we'll pick aMAX_CLASS_SIZEand declare #ioat grades[MAX_CLASS_SIZE]

2. Clearly we're going to have to read the data in from affilat should probably be done by a
function.

We should give the function the array and tell it abdddiX_CLASS_SIZE and thetet it tell usthe
actual size

3. In order to find the median we're going to havsotd the file into either ascending or descending
order. Anothefuntion. It will need the grades array and the actual class size.

4. compute the media

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/arrays.htm 2004.03.24 http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/arrays.htm

2004.03.24

