
Boolean Variables and Expressions Page 1 of 7

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/boolean.html 2004.02.16

A boolean variable is a variable that can take on one of only two values—true or
false

A logical expression (also known as a condition) is an expression that can only
have two possible outcomes—true or false.

You will also sometimes hear these values or outcomes referred to as

1. on or off
2. 1 or 0
3. high or low

The following example demonstrates boolean variables and some simple
operations on them:

The above example introduces the boolean operator not (!) sometimes called the

bool_1.cpp

/***** boolean variables & expressions ********

 This is not a program in the accepted sense.
 Rather it is a series of isolated examples
 strung together as if they were a program.

**/

int main(){
 int n = 3;

 bool isOn = true ;
 bool flag;
 bool toggle = false ;

 flag = !isOn;
 toggle = !toggle;

 flag = n;
 toggle = !toggle;

 flag = (n != 0);
 toggle = !toggle;

 flag = n < 3;
 toggle = !toggle;

 flag = n >= 3 && n < 6;
 toggle = !toggle;

 return 0;
}

Boolean Variables and Expressions Page 2 of 7

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/boolean.html 2004.02.16

bang. The line

flag = !isOn;

sets flag to the opposite of isOn (true), so flag becomes false.

The line

toggle = !toggle;

implements a simple toggle switch which changes state every time the line is
executed.

There are three boolean operators, that is operators whose operand(s) are boolean.

This table defines the boolean operators

a||b is true if either a or b is true

a&&b is true only if both a and b are true

Lines like

flag = n < 3;

are a little more complicated. n is an integer (which happens to have the value 3).

n < 3 is a logical expression, that is n is either less than 3 or it isn't.

Operator Kind Relationship

&& binary And

|| binary Or

! unary Not

a b a && b a || b !a

false false false false true

false true false true true

true false false true false

true true true true false

Boolean Variables and Expressions Page 3 of 7

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/boolean.html 2004.02.16

The relational operator less than (<) has a lower precedence than = so the
expression is evaluated first (to false since 3 is not less than 3) and then flag
is set to false.

There are six relational operators, all of which take two operands.

The outcome of a relational operation is always boolean—true or false.

This example is more complex. It contains the following logical expression:

number == 4 || number >= 7 && number <= 10

which combines logical and boolean operators.

The logical operators have lower precedence than the relational ones so

operator operation
== left operand is equal to? right operand

!= left operand is not equal to? right operand

< left operand is less than? right operand

> left operand is greater than? right operand

<= left operand is less thanor equal to? right operand

>= left operand is greater thanor equal to? right operand

bool_2.cpp

#include <iostream>
using namespace std;

/***** complex boolean expressions ********

 In this example we examine complex bool
 expressions. In particular we look at
 the SHORT-CIRCUIT property.

**/

int main(){
 bool flag;
 int number;

 cout << "Please input an integer: " ;
 cin >> number;

 // flag = a + b.c

 flag = number == 4 || number >= 7 && number <= 10;

 cout << "The flag is " << flag <<'\n' ;
 return 0;
}

Boolean Variables and Expressions Page 4 of 7

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/boolean.html 2004.02.16

1. the relational operators are evaluated giving bool results
2. the bool results are then combined (&& before ||)

so the expression above reads

(number isEqualTo? 4) or
(number isGreaterThanOrEqualTo? 7) and (number isLessThanOrEqualTo?
10)

Logicists would consider the three phrases to be propositions each of which is
either true of false

As the comment in the example shows, in boolean algebra, the expression

a or b and c is also written a+b.c where the '+' stands for or and the . or x for and.
The mathematical operators make the precedence of and over or clear.

Here is a table for the precedence of all the operators we know about so far

Conversion to Bool

Integer types are converted to bool as follows:

1. 0 is converted to false
2. anything else is converted to true

Integer types include both int and char. Note also that since doubles can be
converted to ints, this effectively means doubles can be converted to bool as

Operator Precedence Description
! + - Highest logical not, unary plus, unary minus

* / %

multiplication, division, modulo

+ - addition, subtraction

< <= > >= relational inequalities

== != equal, not equal

&& and

|| or

= Lowest assignment

Boolean Variables and Expressions Page 5 of 7

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/boolean.html 2004.02.16

well.

If an int value occurs where a bool is expected, this conversion is often applied
automatically, e.g

if (i) cout << "i is not 0";
else cout << "i is 0";

This is generally regarded as poor style.

Note: We haven't actually studied if yet (next topic!) but the meaning should be
clear.

Conversion from Bool

values of type bool can be converted to int as follows:

1. false is converted to 0
2. true is converted to 1

Again, if a bool value is encountered where an int is expected the conversion
can occur automatically. In the following example flag is a bool and x is a
double:

x = x + flag;

Since x is a double and only a double can be added to a double, the value
of flag is first converted to an int (0 or 1) and then that int is converted to a
double (0.0 or 1.0).

If flag is false, x remains unchanged. If true, 1.0 is added to x.

Such "clever" programming is seldom justified and we will penalize it as bad style.

C++ (and many languages which borrow its syntax such as Java, JavaScript, PHP)
have something know as the short- circuit property.

Within the bounds of precedence, boolean expressions are executed left to right.
Once the outcome of the expression is known, execution stops with no farther
evaluation.

In the above example, the steps are as follows.

1. evaluate whether the first proposition is true or false (number==4)
2. evaluate the second proposition (number >=7)

Boolean Variables and Expressions Page 6 of 7

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/boolean.html 2004.02.16

3. evaluate the third proposition (number <= 10)
4. combine the second and third results by anding them
5. combine first result by oring it with result of step 4.

if we input to number a value of 4, the first proposition will be true. Since that
guarantees the entire combined proposition is true (true or anything else is
always true), step 1 is the only step that is executed.

If we input 5 or 6, the first proposition will be false, proposition two will be
false, guaranteeing the entire proposition is false, so execution stops after
step 3.

Consider the following example:

our logical expression

(2 *(number/ 2) == number)

has only got one logical operator. The rest of it involves a little computer trickery.

It uses the special properties of integer division to check if number is even

bool_3.cpp

#include <iostream>
using namespace std;

/***** odd or even numbers ********

 In this example we utilize the properties
 of integer arithmetic to determine if a
 number is odd or even.

**/

int main(){
 bool even;
 int number;

 cout << "Please input an integer: " ;
 cin >> number;

 even = (2*(number/2) == number);

 cout << "The number is " ;
 if (even)
 cout << "even.\n" ;
 else
 cout << "odd.\n" ;

 return 0;
}

Boolean Variables and Expressions Page 7 of 7

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/boolean.html 2004.02.16

When we divide an even number by 2 there will be no remainder so when we
multiply by 2 again we get the original number back.

Dividing an odd number by 2, however gives us a fractional part which is discarded
(integers can't hold fractional parts). Thus when we multiply by 2 again we don't get
the original number back.

Again, the progam uses an if statement which poaches on our next topic. But
again, the intent should be pretty clear.

Most C++ programmers would see the following as improved. Why?

This page last updated on Monday, February 2, 2004

bool_4.cpp

#include <iostream>
using namespace std;

/***** odd or even numbers ********

 A little better version of using
 integer arithmetic to determine if a
 number is odd or even.

**/

int main(){
 int number;

 cout << "Please input an integer: " ;
 cin >> number;

 cout << "The number is " ;

 if (2*(number/2) == number)
 cout << "even.\n" ;
 else
 cout << "odd.\n" ;

 return 0;
}

