
An Introduction to Functions Page 1 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

Remember a function is the smallest programming module. It is the squad of the
programming world. Each function should have

1. a small amount of code
2. a single well specified task

Thus, if we have multiple tasks to do in a program we will break it up into function
modules, 1 task per function.

Since main is a function we've already been programming functions. Now we see
how to add more functions.

Functions appear in programs in three ways:

1. Functions have to be implemented (or in C++ we say defined).
2. Functions have to be invoked or called.
3. Just like variables, functions have be declared before the can be used

(called).

Implementation is just what we have been doing for main all along. Writing code
for it.

main gets called automatically whenever we run our program. For other functions
we will have to decide and specify when to call them.

Let's see an example.

complex_print.cpp

#include <iostream>
using namespace std;

void printComplex(double re, double im); // function DECLARATION

int main(){
 double re1 = 2.4 ;
 double im1 = 3.1 ;
 double re2 = -1. ;
 double im2 = -2.9 ;

 cout << "The first number is " ;
 printComplex(re1, im1);

 cout << endl << "The second number is " ;
 printComplex(re2, im2); // function CALL

 cout << endl << "Their sum is " ;
 printComplex(re1 + re2, im1 + im2); // function CALL

An Introduction to Functions Page 2 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

There's lots going on here

Let's focus now just on the definition or implementation of the function

printComplex is a function that carries out an task for us without returning
anything. Here is the syntax for its definition

complex_print.cpp

 cout << endl << "Their difference is " ;
 printComplex(re1 - re2, im1 - im2); // function CALL

 cout << endl;
 return 0;
}
 void printComplex(double re, double im){ // function DEFINITION
 cout << '(' << re ;
 cout <<" + " << im;
 cout << "j)" ;
}

/**
 * printComplex
 *
 * Parameters: re: the real part
 * im: the imaginary part
 * Modifies: cout -- outputs the complex no. whose
 * real part is re and imaginary part is im
 *
 * Returns: nothing
 ***/
void printComplex(double re, double im){ // function DEFINITION
 cout << '(' << re ;
 cout <<" + " << im;
 cout << "j)" ;
}

Non-value returning function:

Form:
void Identifier (ParameterList) {
 Statement
}

Example:

void printInt(int i){
 cout << i;
}

Interpretation: whatever integer is passed in in place of i is
printed to the output stream.

An Introduction to Functions Page 3 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

The void in front of the function name means that the function does not return any
value at all.

Since it does not return anything it does not require a return statement.

The paramater list allows us to pass inputs (called arguments) into functions

In our printComplex example the parameters are re and im (which are both
doubles)

The body of the function appears between the block operators { }

As with main it is a series of statements that are executed sequentially.

In general, if parameters have been passed into the function, the statement will do
something with the data passed in.

In printComplex, whatever values for re and im are passed in when the
function is called will be printed out in standard complex notation.

Let's look at the main function of our complex printing program again.

Here is the syntax of a function call:

complex_print.cpp

printed to the output stream.

int main(){
 double re1 = 2.4 ;
 double im1 = 3.1 ;
 double re2 = -1. ;
 double im2 = -2.9 ;

 cout << "The first number is " ;
 printComplex(re1, im1);

 cout << endl << "The second number is " ;
 printComplex(re2, im2); // function CALL

 cout << endl << "Their sum is " ;
 printComplex(re1 + re2, im1 + im2); // function CALL

 cout << endl << "Their difference is " ;
 printComplex(re1 - re2, im1 - im2); // function CALL

 cout << endl;
 return 0;
}

An Introduction to Functions Page 4 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

where ArgumentList is zero or more expressions, separated by commas.

� Argument values are assigned to the parameters in the order that they
appear.

� If the function is value-returning, then function call is an expression.

� If the function is void, then function call is a statement.

Notice that we call the printComplex function in three separate places

Since it returns void, this is equivalent to 3 statements.

This illustrates a fundamental principle of functions (and more generally program
modules)

use often? implement once

Instructions are normally executed sequentially. We call this a flow of control.

Control
flows from
one
instruction
to the next
in a step-
like
sequence.

function call:

Form:
Identifier (ArgumentList) ;

Example:

sqrt(2*x);

Interpretation: the square root of 2x is computed and the
result returned.

An Introduction to Functions Page 5 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

Function
calls alter
the normal
flow of
control.

When a
call is
executed
we leave
the
sequence
and flow
over to the
beginning
of the
function

Instructions
are then
executed
inside the
function
using the
normal
sequential
sequence.

When the
instructions
in the
function
are
finished
control
returns to
the original
sequence

After the
return
control flow
picks up
where it left

An Introduction to Functions Page 6 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

In professional progams there are usually multiple programmers on a project
(writing multiple files)

A function written by one programmer is used my many others.

When implementing a function think of it as providing a service.

Whoever calls your function is your client.

The function prototype, e.g.

void printComplex(double re, double im)

is the start of a contract between the service provider (programmer implementing
the function) and the client (programmer using the function).

It is the client's responsibility to provide values for the parameters re and im

Here's something we see on exams.

Don't, don't, don't do this.

You are ignoring the values sent to you by the client and asking for new ones.

When you turn up at security at the airport, you are required to have a valid
boarding pass.

You would be seriously annoyed if you had a valid boarding pass and security tried
to sell you a new ticket.

off.

complex_print_aargh.cpp

void printComplex(double re, double im){ // function DEFINITION

 // Please note, these 4 lines are wrong, Wrong, WRONG!
 cout << "Please input real part: " ;
 cin >> re;
 cout << "And imaginary part: " ;
 cin >> im;
 // end of wrong, Wrong, WRONG

 cout << '(' << re ;
 cout << " + j" << im;
 cout << "j)" ;

An Introduction to Functions Page 7 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

The contract is you show up with a boarding pass and they will pass you into the
boarding area.

Getting you a boarding pass is Air Canada's or CanJet's responsibility.

Getting you a boarding pass is a different function, handled in a different part of the
airport!

This illustrates a second important principle

parameter values are provided by the caller

Before a function can be used, it must be declared.

Just like variables, functions must be declared before they are used. There is a
difference, though.

1. variables are declared inside functions (at the internal level)
2. functions are declared outside functions (at the external level)

In our complex printing example the declaration of printComplex appears
before main.

Note that the declaration is almost identical to the function prototype. We simply
follow it with a ; to make a declaration instead of { } to create an implementation.

Why declare? It appears redundant.

Big programs are spread across multiple files.

1. Functions are implemented once only (in one file)
2. Functions are used (called) in many places (many files) so form of function

must be declared before it is called.
3. Function declaration allows compiler to check that the grammar of the call is

correct.

Clearly the following is in error.

complex_print.cpp

complex_print_bad_grammar.cpp

void printComplex(double re, double im); // function DECLARATION

#include <iostream>
using namespace std;

void printComplex(double re, double im);

An Introduction to Functions Page 8 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

We don't actually need the implementation code to see the syntax is incorrect.

Consider a slightly different example.

This program inputs a pair of ints then tells you which is the lesser of the two

It uses a function called minimum which is declared as follows:

int minimum(int a1, int a2);

We don't see the implementation code here (normal for bigger programs) but the
declaration tells us a lot:

1. The function takes two int arguments (syntax)
2. The function returns an int value (syntax)
3. The name suggests the returned value will be the minimum of the two args

(style)

That's all we need to know to use the function!

The syntax is all the compiler needs to check we are using it correctly.

function_1.cpp

int main(){
 printComplex(3.2 , "im part");
 return 0;
}

 #include <iostream>
using namespace std;

/**************** functions ********************

 A program to find the minimum of a pair
 of integers.

**/

// function DECLARATION which forms an INTERFACE
int minimum(int a1, int a2);

void main(){
 int first, second;

 cout << "Input the first number: " ;
 cin >> first;
 cout << " & the second one: " ;
 cin >> second;

 cout << "\nThe minimum of the two numbers is " ;
 cout << minimum(first,second) << '\n' ;
}

An Introduction to Functions Page 9 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

Functions that return values require a slightly ammended syntax definition:

The returnType is the type of the value being returned. e.g. char, int,
double, String, etc.

Here's the implementation of the minimum function

This includes an if statement which we haven't introduced yet, but its meaning
should be clear. (We wanted to include the video for later study).

Notice we have two different return statements. This underlines that the
return statement does two things.

1. It returns a value
2. It exits from the program

In fact, the value returning is optional

function_1.cpp

Value returning function:

Form:
ReturnType Identifier (ParameterList) {
 Statement
}

Example:

double sin(double x){
 //code to compute y=sin(x)
 return y;
}

Interpretation: the sin of x is computed and the result
returned.

// function DEFINITION (it's IMPLEMENTATION)
int minimum(int a1, int a2){
 if (a1 < a2)
 return a1;
 else
 return a2;
}

An Introduction to Functions Page 10 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

Some programming shops decry the use of multiple returns from a function as it
can make code difficult to follow and therefore maintain.

Here's an alternate version with only a single return.

Notice, we've been able to change the implementation of the function without
changing its declaration.

That is we don't change what the minimum function does only how it does it.

For big programs, this is a major advantage of modularization:

We can change a module without affecting the rest of our program.

There are thousands of functions available in dozens of libraries

� Don't re-invent the wheel!

� Many common functions are included in libraries.

� Need to #include the appropriate library header file for each.

The header files mostly contain the declarations needed to use the libraries

function_2.cpp

return statement

Forms:
return;
return value;

Examples:

 return;
 return y;

Interpretation: the first example is a return from a function
that returns nothing (void). It simple forces an exit from the
function. The second forces an exit and returns the value of
y

 // function DEFINITION (it's IMPLEMENTATION)
int minimum(int a1, int a2){
 int temp = a2;
 if (a1 < a2)
 temp = a1;
 return temp;

An Introduction to Functions Page 11 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

For example, the math library has declarations for

� Trigonometric functions e.g. double sin(double x), double tan
(double x)

� Hyperbolic functions. e.g. double atan(double x)

� The power function which has to be used since C++ has no exponentiation
operator: double pow(double x, double exp)

� the special function double atan2(double x, double y) which
returns the arc tangent of y/x, a function which is defined for x = 0.

To use any of these functions you would add to the top of your file the line

#include <math>

which would instruct the pre-compiler (our administrative assistant) to insert the
declarations for all the math functions into our file.

libfunc.cpp

/**
 * Memorial University of Newfoundland
 * Engineering 2420 Structured Programming
 * libfunc.cpp -- Demonstrate using library functions.
 *
 *
 * Author: Dennis Peters
 * Date: 2001.01.27
 *
 ***/
#include <iostream>
#include <cstdlib>
#include <cmath>
using namespace std;

/**
 * main
 *
 * Parameters: none
 *
 * Returns: 0
 ***/
int
main()
{
 float x; // First number input by user
 float y; // Second number input by user

 cout << "Please enter two floating-point numbers: " ;
 cin >> x >> y;
 cout << "\nTable of library functions : " << endl;
 cout << "Function\tValue" << endl;
 cout << "--------\t------" << endl;

 cout << "abs(" << int (x) << ") =\t" << abs(int (x)) << endl;
 cout << "abs(" << int (y) << ") =\t" << abs(int (y)) << endl;

An Introduction to Functions Page 12 of 12

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/functions_intro.html 2004.01.23

This page last updated on Monday, January 19, 2004

 cout << "ceil(" << x << ") =\t" << ceil(x) << endl;
 cout << "ceil(" << y << ") =\t" << ceil(y) << endl;
 cout << "cos(" << x << ") =\t" << cos(x) << endl;
 cout << "cos(" << y << ") =\t" << cos(y) << endl;
 cout << "exp(" << x << ") =\t" << exp(x) << endl;
 cout << "exp(" << y << ") =\t" << exp(y) << endl;
 cout << "fabs(" << x << ") =\t" << fabs(x) << endl;
 cout << "fabs(" << y << ") =\t" << fabs(y) << endl;
 cout << "floor(" << x << ") =\t" << floor(x) << endl;
 cout << "floor(" << y << ") =\t" << floor(y) << endl;
 cout << "log(" << x << ") =\t" << log(x) << endl;
 cout << "log(" << y << ") =\t" << log(y) << endl;
 cout << "log10(" << x << ") =\t" << log10(x) << endl;
 cout << "log10(" << y << ") =\t" << log10(y) << endl;
 cout << "pow(" << x << ", " << y << ") =\t" << pow(x, y) << endl;
 cout << "pow(" << y << ", " << x << ") =\t" << pow(y, x) << endl;
 cout << "sin(" << x << ") =\t" << sin(x) << endl;
 cout << "sin(" << y << ") =\t" << sin(y) << endl;
 cout << "sqrt(" << x << ") =\t" << sqrt(x) << endl;
 cout << "sqrt(" << y << ") =\t" << sqrt(y) << endl;
 cout << "tan(" << x << ") =\t" << tan(x) << endl;
 cout << "tan(" << y << ") =\t" << tan(y) << endl;

 return 0;
}

/**
 * Revision: 1.1
 * Date: 2001-01-27 14:49:38-03:30
 *
 *
 * REVISION HISTORY
 *
 *
 * By: dpeters
 * Description: Initial revision
 *
 *
 **/

