
If Statements Page 1 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

If statements are used to switch the flow of control between alternate paths.

The formal syntax for the if-then statement is

Remember that StatementT can either be a single statement or a statement block.

Note that there is no actual keyword for then. The T subscript on StatementT 

signifies it is the statement executed when the boolean expression is true —the 
then clause 

The control flow looks like this.

The b in the decision block 
represents the Boolean 
Expression of the syntax 
definition 

The then  clause represents 
either a single statement or a 
block of statements.

if-then statement :

Form: 
if ( Boolean Expression )  StatementT 

Example: 

if (grade < 50)
    cout << "F!";

Interpretation: if the value of grade  is less than 50  "an 
F!"  is put into the output stream

If Statements Page 2 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Let's use the if-then  statement to determine the letter grade that should be 
assigned to a particular numeric mark. (Note, when the video was created, 
Memorial University reported grades to the nearest five marks. We've left the 
example to be as close to the video as possible.)

If b is true  the then  clause 
is executed

If it is false , it is bypassed

In either case, the flows of 
control come back together 
and the same following 
statement is executed.

if_1.cpp

/*******  if demonstration ********
    
   In this demo we sort marks
   into letter grade bins

*******************************************/

#include <iostream>
using  namespace  std;

int  main(){
    int  mark;

    cout<< "Enter your mark: " ;
    cin >> mark;

    cout << "\nThis is a" ;

    if  (mark < 48) {
        cout << "n F.\n" ;
    }

    // if (48 <= mark < 52)   ***** NOT LEGAL
    if  (mark >= 48  && mark < 52) {
        cout << " D.\n" ;
    }

    if  (mark >= 52  && mark < 63) {
        cout << " C.\n" ;
    }

    if  (mark >= 63  && mark < 78) {
        cout << " B.\n" ;
    }



If Statements Page 3 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Code Notes

1. We don't bother to initialize mark  because we know that data will be entered 
into it before it will be used.

2. The line

cout << "\nThis is a" ;  

precedes all the if  statements because we want to output it no matter what 
the letter grade is 

3. When checking whether a mark is between boundaries, the perfectly well-formed 
mathematical condition 48 <= mark < 52  is not legal as a C++ 
expression and must be reformulated as two separate boolean conditions 
joined by an and 

if (mark >= 48 && mark < 52 )

4. Note that we have inserted the letter n before the A and the F. This is to make 
the output read correctly in English, i.e.

This is a B           but
This is an F

    if  (mark >= 78  ) {
        cout << "n A.\n" ;
    }
    return  0;
}

If Statements Page 4 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

You might consider point 4 fussy, but remember, though you write the code just 
once it gets used many times. This example exemplifies another important 
principle: 

Programs are for people. Get the details 
right and make them people friendly 

Here's how our program 
looks diagrammatically.

Competent C++ 
programmers would 
complain about the 
program. 

The larger decision 
diamonds were made 
bigger to hold the bigger 
expressions

They demonstrate 
graphically that each of 
these require two tests to 
be made 

Note that a lot of the tests 
are redundant

if the result of mark<48  is 
false then we know it must 
be >=48 . Why retest it?



If Statements Page 5 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

 

if-then-else

With the if-then-else  statement we add a second clause for the false  case 
called the else  clause.

The Statement subscripts signify the statements to be executed when the boolean 
expression is true  and false . So StatementT is the then clause and StatementF 

the else clause.

Here's the control flow:

if-then-else statement :

Form: 
if ( Boolean Expression )  StatementT
else  StatementF 

Example: 

if (number < 0)
    cout << -number;
else
    cout << number;

Interpretation: if number  is negative it outputs -number  
(a positive quantity) otherwise it ouputs number . i.e., 
outputs the absolute value of number  

If Statements Page 6 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Both the then clause and the else  clause can be either single 
statements or a block of statements

if the boolean expression b is true  the then clause is executed

if it's false  the else clause is executed

Either clause can be a single statement or a block of statements. 



If Statements Page 7 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Let's see how we can use the if-then-else form of the if statement to improve our 
first example.

Here, by using the else  clause, and by nesting each subsequent if statement in 
its preceding statement's else clause, we have eliminated the double testing

The strategy is actually very simple. In essence what we're doing is

if the mark is less than 48

then the grade is an F

otherwise go on to further testing 

if_2.cpp

    
   In this demo we sort marks
   into letter grade bins a little
   more efficiently than in the
   first demo.

*******************************************/
#include <iostream>
using  namespace  std;

int  main(){
    int  mark;

    cout<< "Enter your mark: " ;
    cin >> mark;

    cout << "\nThis is a" ;

    if  (mark < 48) {
        cout << "n F.\n" ;
    } else  {

        if  (mark < 52) {
            cout << " D.\n" ;
        } else  {

            if  (mark < 63) {
                cout << " C.\n" ;
            } else  {

                if  (mark < 78) {
                    cout << " B.\n" ;
                } else  {
                    cout << "n A.\n" ;
                }
            }
        }
    }
 return  0;
}

If Statements Page 8 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Here's what the control flow looks like 

If you look 
back at our 
first 
example 
you will see 
we used five 
decision 
blocks, 
three of 
which were 
"big" ones—
i.e., 
contained 
two 
separate 
tests

That's a 
total of eight 
tests! 

Here we 
only use 
four, single-
test, 
decision 
blocks

Before we 
tested 
mark  to 
see if it was 
<48 , then 
turned 
around and 
tested it to 
see if it was 
>=48

Here we use 
else  clause to take advantage of the fact that if it is not <48 , it must be >=48  

But haven't we generated spaghetti code? Not really. The flow of control is highly 
constrained and so very orderly

In this 



If Statements Page 9 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

diagram 
the 
hatched 
area is 
actually 
the 
else  
clause of 
the first 
if  

statement.

All the rest of the if  statements are wholly embedded within that else  clause.

The power of control structures really stems from our ability to nest them, one 
inside the other, to build almost arbitrarily complex structures.

Of course, we don't want arbitrarily complex, just complex enough to do the job 
(and not one jot more).

One of the most basic design skills good programmers have is an ability to get their 

If Statements Page 10 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

control structures right.



If Statements Page 11 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Remember our complex number printing function?

It isn't very good. Try it with -ve nos. or with one part set to zero. Here's a better 
version (it uses i instead of j  because that's what we used in Math when the 
video was done). 

../functions/complex_print.cpp

 

/******************************************************************
 * printComplex
 *
 * Parameters: re: the real part
 *             im: the imaginary part
 * Modifies: cout -- outputs the complex no. whose
 *             real part is re and imaginary part is im
 *
 * Returns: nothing
 *******************************************************************/
void  printComplex( double  re, double  im){    // function DEFINITION
    cout << '('  << re ;
    cout << " + "  << im;
    cout << "j)" ;
}

If Statements Page 12 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16



If Statements Page 13 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

By our standards this isn't nice example. The specialised nature of the printing task 
should be embedded in a function as we did a few lectures back. We kept it 
because we do have a video, that will let you review the detailed programming 
issues at a later date. 

if_3.cpp

/*******  if demonstration ********
    
   In this complex if demo we
   output properly formatted
   complex nos.

*******************************************/

#include <iostream>   // info from standard library
using  namespace  std;    // cout is in the std namespace

int  main(){
    int  real;
    int  imag;

    cout << "Enter the real part: " ;
    cin >> real;
    cout << "& the imaginary part: " ;
    cin >> imag;

    cout << "\nThe complex no. is (" ;

    if  (real == 0) {
        if  (imag == 0) {
            cout << "0" ;
        } else  {
            cout << imag << 'i' ;
        }
    } else  {
        cout << real;
        if  (imag < 0) {
            cout << " - " ;
            cout << -imag << 'i' ;
        }
        if  (imag > 0) {
            cout << " + " ;
            cout << imag << 'i' ;
        }
    }
    cout << ")\n" ;
    return  0;
}

If Statements Page 14 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Here's an updated version that takes our earlier well-structured example and simply 
replaces the function with the better one from the video:

Self-study: Try to identify each then and else clauses. Roll the mouse over each 
if  to see its corresponding then clause and each else  to see the else clause

Here they are diagrammed in the flow graph for the function

better_complex_print.cpp

/******************************************************************
 * printComplex
 *
 * Parameters: re: the real part
 *             im: the imaginary part
 * Modifies: cout -- outputs the complex no. whose
 *             real part is re and imaginary part is im
 *
 * Returns: nothing
 *******************************************************************/
void  printComplex( double  re, double  im){    // function DEFINITION
    cout << '(' ;
    if  (re == 0) {
        if  (im == 0) {
            cout << "0" ;
        }  else  {
            cout << im << 'j' ;
        }
    }  else  {
        cout << re;
        if  (im < 0) {
            cout << " - " ;
            cout << -im << 'j' ;
        }
        if  (im > 0) {
            cout << " + " ;
            cout << im << 'j' ;
        }
    }
    cout << ')' ;
}



If Statements Page 15 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Notice how the other if  statements are wholly nested with the then and else 
clauses of the first if  statement.

On the section on Expressions we briefly discussed rounding but said it was only 
good for positive numbers.

When C++ converts a double  to an int  it does it by truncation. Thus 3.7 —>3, 
3.4 —>3, - 3.7 —>- 3,  and -3.3 —>- 3

So while adding .5  to a double  before converting works for positive nos we need 
to add -.5  to negative ones. Sounds like a good job for a function! 

round.cpp

/******************************************************************
 * round
 *
 * Parameters: x: a real number
 *
 * Modifies: nothing
 *
 * Returns: x rounded to the nearest integer

If Statements Page 16 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Code Notes

1. Our function has two separate return  statements. Some programming shops 
forbid this because it can make larger functions hard to maintain. 

2. Notice there is no else  even though we only want to execute one of the two 
return s. This is because if x < 0 , the then clause is executed and it is 
a return. Remember, return  not only sends back a value it exits as well. 
So the only way the second return  can be reached is if x >= 0 . 

3. The type cast (int)  in the two return  statements is not strictly necessary. 
The round  function is contracted to return an int  so the compiler will 
automatically insert a conversion into the object code even without the type 
cast.

Professional programmers will often insert such type casts simply to flag 
maintenance programmers that they intended a conversion to take place

 *******************************************************************/
int  round( double  x){
    if  (x < 0)
        return  ( int )(x- .5 );
    return  ( int )(x+ .5 );
}



If Statements Page 17 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

Here is another way to write the same function.

Placement of the {  

There are two schools of thought on where to place the { (open block) operator

if (im > 0) {
   cout << " + ";
   cout << im;
}

if (im > 0)
{
   cout << " + ";
   cout << im;
}

The second one makes it easy to line up the }  with its own { .

The first one is more compact, taking one less line vertically.

We accept either in this course but you must be consistent. Whichever one you 
decide on use it always.

Other aspects are consistent.

1. indent statements inside the block (most program editors try to automate this 
anyway—set the indent to 4 spaces) 

2. Don't indent the } . It should line up with the start of its own if  (or else  if it 
terminates an else clause). 

To Block or Not to Block

round_2.cpp

/******************************************************************
 * round
 *
 * Parameters: x: a real number
 *
 * Modifies: nothing
 *
 * Returns: x rounded to the nearest integer
 *******************************************************************/
int  round( double  x){
    return  x < 0 ? ( int ) (x- .5 ) : ( int )(x+ .5 );
}

If Statements Page 18 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

One of our bin examples above includes the following lines of code

if (mark < 48 ) {
    cout << "n F.\n";
} 

This could equally well have been written

if (mark < 48 )
    cout << "n F.\n";

Some programming shops routinely insist upon the first. Others prefer the second 
as being more compact. We will accept either.

This line is also legal C++

if (mark < 48 ) cout << "n F.\n";

We will not accept it. Always put (or start) then and else clauses on their own line.



If Statements Page 19 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

The else if  Construct 

Remember this fragment of code taken from our second example? 

All if  statements subsequent to the first one are wholly embedded in the 
preceding else clause. In fact they are the else clause.

Some languages actually have a special elseif  keyword.

if_2.cpp

int  main(){
    int  mark;

    cout<< "Enter your mark: " ;
    cin >> mark;

    cout << "\nThis is a" ;

    if  (mark < 48) {
        cout << "n F.\n" ;
    } else  {

        if  (mark < 52) {
            cout << " D.\n" ;
        } else  {

            if  (mark < 63) {
                cout << " C.\n" ;
            } else  {

                if  (mark < 78) {
                    cout << " B.\n" ;
                } else  {
                    cout << "n A.\n" ;
                }
            }
        }
    }

If Statements Page 20 of 20

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/if_statements.html 2004.02.16

There's no need of that, but many experienced programmers would simulate that by 
replacing else  { if statement }  by else if  statement as below (we've actually 
removed all the brackets because the then clauses were also just single 
statements). 

This page last updated on Monday, February 2, 2004 

if_4.cpp

int  main(){
    int  mark;

    cout<< "Enter your mark: " ;
    cin >> mark;

    cout << "\nThis is a" ;

    if  (mark < 48)
        cout << "n F.\n" ;
    else  if  (mark < 52)
        cout << " D.\n" ;
    else  if  (mark < 63)
        cout << " C.\n" ;
    else  if  (mark < 78)
        cout << " B.\n" ;
    else  
        cout << "n A.\n" ;    
    return  0;
}


