
Introduction to C++ Language Page 1 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

C++ is one of a number of well-known computer languages, about which we may
say:

1. They genuinely are languages.
2. The good news is they have a very small, closed vocabulary.
3. The bad news is they are much fussier about grammar than a grade eight

english teacher!

The purpose of computer languages is for human programmers to write out detailed
instructions for computers to carry out.

Our objective is to get you familiar enough with C++ to write meaningful sets of
iinstructions for computers.

There are two aspects to this:

Syntax
The computer engineering term for grammar. You have to form your
instructions correctly, or they will be rejected by the compiler.

Semantics
The computer engineering term for meaning. My dog flies books is a well
formed English sentence, whose meaning is at least suspect. The compiler is
a grammar cop only. It is incapable of checking for meaning.

Fermez la porte means the same in French as its English counterpart Close the
door. There is no equivalent in C++.

Computer languages are very specialized. They are designed to tell computers
what to do. To use them effectively (to make them meaningful) you will have to
learn something about how computers work.

So, throughout the course, there will be twin threads, woven together: Syntax—get
the grammar right. Semantics—make it meaningful.

Initially, we will focus on syntax.

Alphabet

Uppercase & lowercase roman letters, A-Z and a-z, the digits 0-9, a well defined set
of symbols available on every standard keyboard, e.g.

Introduction to C++ Language Page 2 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

< > { } () : ; , . ? / * & + - ! ^ ' " = | _

Some non-printing characters, the most common of which are the newline (\n) and
tab (\t) characters

Any continuous combination of newline, tab and/or spaces are collectively known
as whitespace

Words

The computer Engineering term is actually token.

Simply put

1. Tokens contain no whitespace
2. Operators are tokens
3. Words with no whitespace are tokens

So the following are all C++ tokens: while window { x George +

The following expression contains five tokens: (x1+b)

They are (x1 + b)

You can see why the more specialised term token was adopted. while window
George and x look like words but { and + don't

There are effectively three kinds of words

keywords
words defined for the language. Basically, its vocabulary

identifiers
words created by the programmer as names for things.

symbols
Sometimes single as { + * and sometimes in pairs as != or /*

Keywords are sometimes called reserved words as programmers may not use them
as identifiers. They are reserved for the language.

Sentences

The equivalent of a sentence is a statement. Statements are always terminated by
a semicolon.

x = y + z - 4;
cout << "Hello world!\n";

Introduction to C++ Language Page 3 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

Paragraphs

Again we have a different technical term. The C++ equivalent of a paragraph is a
block—a set of statements enclosed in a pair of curly brackets { }

We can turn the above statements into a block as follows:

{
 x = y + z - 4;
 cout << "Hello world!\n";
}

It is considered good style to indent statements inside a block.

Some Specifics

commented_hello.cpp

/**
 * Memorial University of Newfoundland
 * Engineering 2420 Structured Programming
 *
 * hello.cpp -- The simplest C++ program.
 *
 * Author: Dennis Peters
 * Date: 2000.01.11
 *
 ***/
#include <iostream>
using namespace std;

/**
 * main
 *
 * Parameters: none
 * Modifies: cout -- outputs a message
 *
 * Returns: 0
 ***/
int main() {
 cout << "hello world!" << endl;
 return 0;
}

/**
 * REVISION HISTORY
 *
 * REV 01
 * date: 2003.12.19
 * by: mpbl
 * description: some minor style editing
 *
 *
 **/

Introduction to C++ Language Page 4 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

Comments

Comments are for people. The precompiler actually throws them away

They are a major mechanism for documenting programs.

They come in two flavours:

// A single line comment. Ends at the end of the line
 /*
 * Coments enclosed in slash-asterix ... asterix-slash can
 * extend over several lines
 */

Includes

Pre-processor directive—tells the compiler to insert code from another file (typically
declarations of other functions).

 #include <iostream>

Code from the iostream file is inserted exactly as if you had typed it in yourself.

using namespace

tells the compiler where to look for definitions that aren't defined in our program.

using namespace std;

main function definition

Every program must have a main function. It is the starting point of program
execution. This is what it looks like

int main() {
 // the function body goes here
 }

When execution reaches the end of main , the program terminates.

We're going to introduce our first syntax definition here:

Introduction to C++ Language Page 5 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

main is actually a function returning value, which means it fits this form.

Both main and square return an integer value (int). In the case of square
the value returned (the output) represents the square of num, the value input.

In the case of main , the return value is actually passed to the operating system
after the program is run. Normally it will be zero, meaning your program ran
successfully. Other numbers represent codes for various kinds of errors. In this
course we will generally return just 0;

The identifier represents the name of the function (main or square)

The parameter list (which goes between parentheses) represents the arguments
passed into the function. Although it is possible to pass arguments into main we
won't be doing so in this course, so our version of main has an empty parameter
list, () .

The Return Statement

The example in our function returning value syntax definition includes one type of
return statement, so we need to define its syntax as well.

Function returning value:

Form:
returnType Identifier (ParameterList) {
 Statement
}
Example:

int square(int num){
 return num * num;
}

Interpretation: the square of x is computed and the result
returned.

Return statement:

Form:
return Expression ;

Example:

Introduction to C++ Language Page 6 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

There's a lot going on here. For example we haven't really defined what an
Expression is yet. We're kind of at a chicken-and-egg stage. Don't worry, we'll get it
all filled in over the next few lectures.

Here's our program again

commented_hello.cpp

return num * num;

Interpretation: the Expression (num x num) is computed
then return causes execution to jump back to the point of the
function call, substituting the value of Expression for the
function call..

/**
 * Memorial University of Newfoundland
 * Engineering 2420 Structured Programming
 *
 * hello.cpp -- The simplest C++ program.
 *
 * Author: Dennis Peters
 * Date: 2000.01.11
 *
 ***/
#include <iostream>
using namespace std;

/**
 * main
 *
 * Parameters: none
 * Modifies: cout -- outputs a message
 *
 * Returns: 0
 ***/
int main() {
 cout << "hello world!" << endl;
 return 0;
}

/**
 * REVISION HISTORY
 *
 * REV 01
 * date: 2003.12.19
 * by: mpbl
 * description: some minor style editing
 *
 *
 **/

Introduction to C++ Language Page 7 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

This drawing
looks at just
the pre-
compile /
compile
process.

The two work
invisibly as a
pair. It looks
like one
process to
the
programmer.

Any
instruction
that begins
with a hash
mark (#) is
actually an
instruction to
the pre-
compiler, the
programmer's
automated
administrative
assistant.

Here the
assistant
strips out all
the
comments
and fetches
the code from
the
iostream
header file

The resulting
code the

Introduction to C++ Language Page 8 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

The program above includes the following line:

cout << "hello world!" << endl;

"hello world!" is known as a literal. Although there are many kinds of literals
in C++ we will focus on four for now:

integer literals
standard integers such as 1, 2, -17 or 2056

double literals
real number literals using decimal notation (3. , 3.0 , 3.14159 or -
17.65) or floating point (exponential) notation (1.0e11 or-23.6e-3)

character literals
single characters such as 'a' , 'x' , 'H' , '!' or '\n'

compiler gets
is much
reduced
except thatall
code from the
header file
has been
added. We
don't show it
because it's
too complex.

The compiler
checks the
reultant code
for syntax
errors. If it
finds any it
will generate
a report

Only if the
code is
grammatically
correct will an
output file be
generated.

Introduction to C++ Language Page 9 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

string literals
a sequence of characters such as "hello world!\n" , "Michael" or
"The quick fox jumped over the lazy dog."

Note that single characters are always enclosed by a single quote while strings are
always enclosed in double quotes.

Thus

cout << 'hello world!' << endl;

would result in a syntax error.

Output: Stream Insertion Operator

cout << expression; —output the value of expression to the standard
output (screen) stream.

cout << "Hello world!" << endl;

<< is a left associative operator -- expressions are ouput left-to-right.

endl causes an newline ('\n') character to be output.

Assignment Statement

Store a value in a variable:

x = expression;

Compute the value of expression and store it in x.

expression may contain x —the 'old' value is used:

x = x + 1; —Increase the value in x by 1.

Always think of the = as a replacement operator

x <- x+1;

Input: Stream Extraction Operator

cin >> x; —Read a value from the standard input stream (usually the
keyboard) and store it in the variable named x .

Introduction to C++ Language Page 10 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

cin is an identifier for the standard input stream (keyboard) .

1. Assigns to variables left to right order.
2. What can be input depends on the data type of the variable.
3. whitespace (tab, space, newline) is skipped.
4. The reading marker keeps track of the next character to be read.

String Expressions

Objects of class string store sequences of characters:

string bookTitle;
bookTitle = "Programming in C++" ;

Strings can be joined with '+' .

printname.cpp

/**
 * Memorial University of Newfoundland
 * Engineering 2420 Structured Programming
 * printname.cpp -- Demonstrate string expressions.
 *
 *
 * Author: Dennis Peters
 * Date: 2000.01.15
 *
 ***/
#include <iostream>
#include <string>
using namespace std;

const string FIRST = "Dennis" ; // My first name
const string LAST = "Peters" ; // My last name
const char INITIAL = 'K' ; // My initial

/**
 * main
 *
 * Parameters: none
 * Modifies: cout -- outputs the name in various forms.
 *
 * Returns: 0
 ***/
int
main()
{
 string firstLast; // Name in First Last format

 firstLast = FIRST + " " + LAST;
 cout << "My name is: " << firstLast << endl;

 string lastFirst; // Name in Last, First format
 lastFirst = LAST + ", " + FIRST;
 cout << "in last, first format: " << lastFirst;
 cout << ", and with my initial: " << lastFirst << " "

Introduction to C++ Language Page 11 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/language_elements.htm 2004.01.14

Arithmetic Expressions

Numeric operators: +, - , * , / , %

Integer division

If the operands are integers / give the integer part:

13/5 is 2.

% gives the remainder:

13%5 is 3.

This page last updated on Thursday, January 8, 2004

 << INITIAL << "." << endl;

 return 0;
}

/**
 *
 *
 *
 *
 * REVISION HISTORY
 *
 *
 *
 **/

