Loops Pagel of 9
A loop is the only contreflow construct that lets yogo back to an earlier point in the code. Loops are
designed to allow us fiterate—to execute the same piece of code over and over again.

We'll consider three different kinds of loops

While Loops
A while loop is created by wahile statement. Itformal syntax is:

while statement :

Form:
while (Boolean ExpressionStatemeny

Example:

cin >> grade;

while (grade > 100){
cout << "Grade can't exceed 100!";
cin >> grade;

Interpretation: A grade is entered and so loras its value exceed80 an error prompt is given and
thegrade is reentered

As alwaysSatementg can either be single statement or astatement block.

We use the B subscript because its often cafietody of the loop.

The control flow for the example in the syntax definition looks fike.

The>100 in the decision block is shdir grade > 100 of the
example

That boolean expression represenitsog continuation condition
If the condition igrue thebody of the loop is executed.

After the body is executed, we go back and testdbe
continuation condition again

As soon as the condition is falglke flow of control moves to the
statement immediately after thaop.

http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/control _flow/loops.htm 2004.03.24

Loops

cin>>grade
—
-~

false

Page2 of 9

Here we use thehile loop to generate @onversion table from degrees centigrade to degrees

fahrenheit.

E * RUN #VIDEO

#include <iostream>
using namespace std;

Jrrrrririeex g while |00p Fhkk AR AR AIAIAIAK

Using a loop to generate a conversion table
between degrees C and degrees F.

int main(){
int tempC= O0;

cout << "A temperature conversion table\n\n"
cout << "centigrade\tfahrenheit\n” ;
cout << " \n"

while (tempC <= 100){

cout << <<tempC << "it\t\t"
cout << (9*tempC) 5+ 32<< '\n'
tempC += 5;

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

while_1.cpp

2004.03.24

Loops Page3 of 9
}
cout << " \n"
return 0;
L oop Categories

There are a number of wekcognized loop categories, some of whichoutline here
Count-Controlled L oops

When you know how many times to iterate.

3
E RUN sum.cpp

int main() {
double sum= 0.0 ; // Accumulator for sum of values

double val; /I Value input by user

int num= 0; /I Number of values to sum

int count= 0; /I Number of values input so far
cout << "This program calculates the sum of the values entered.\n" ;
cout << "How many values will you sum:")
cin >> num;

while (count < num) {

cout << "Please enter a value: " ;

cin >> val;

sum = sum + val;

count++;
}
cout << "The sum is: " << sum << endl;

return O;

}

Note that the first example (temperature conversion) is basic variation on this theme.
Event-Controlled L oops

Iteration continues until some event occurs in the body of the loop. ldarelample:

ra
int main() {
double sum= 0.0 ; // Accumulator for sum of values
char ans= Yy ; /I Answer from user
double val; /I Value input by user
cout << "This program calculates the sum of the values entered.\n" ;
http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/control _flow/loops.htm 2004.03.24

Loops

while (ans== YY"){

cout << "Please enter a value: " ;

cin >> val;

sum = sum + val;

cout << "Do you want to add another value? (Enter y or n) ")
cin >> ans;

}

cout << "The sum is: " << sum << endl;

return 0;

}
In this case, the event isdecision by the user to stop enteringumbers.
Sentinel-Controlled L oops

e The termination condition is a special value read from input.
« The special value is called a sentinel or trailer value .
e The sentinel must not be a valid input value.

cin >> x; // read first value

while (x != - 1) {// loop until sentinel value is read.
1 process x
cin >> x; // get the next value

}
Alternative (use sideffects and shortcut evaluation):

while (cin >> x && x != -1 {N - 1is sentinel

/I process x

int main() {
double sum= 0.0 ; // Accumulator for sum of values

int count= 0; 1l Counter for number of values

double val; /I Value input by user

double avg; 1l Average of values
cout << "This program calculates the average of a sequence of"
cout << "positive values.\n" ;
cout << "Please enter the values (enter a negative value to exit): "
cin >>val,

while (val > 0){
sum = sum + val;
count++;

cin >> val;

if (count> 0){

avg =sum/ double (count);

cout << "The average is: " << avg << endl;
} else {

cout << "No values were entered.\n" ;

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

<< endl;

Paged of 9

average.cpp

2004.03.24

Loops Page5 of 9

return O;

Flag-Controlled L oops

flag—A Boolean variable used to control logical flow.

bool positive = true; // flag, set to false when x < 0.
while (positive) {
cin>>x; /...
if (x<0){
positive = false;

For Loops
Thefor statement is particularly well suited fmwuntcontrolledloops.
The formal syntax for ther loop is
for statement :
Form:
for (init expression
boolean expression

update expression
Statemerg

Example:

for (inti=0;i<7;it++)
cout <<i*i;

Interpretation: Aninti is declared for thduration of the loop and its value initialisedto 2is
output in the body of the loop and thers incremented. This continues untils 7.

Again Satementg is calledthe body of the loop and it can either besingle statement or astatement
block.

Here's an example of a program that usesthdoop to create a table of factorials.

E " RUN #VIDEOD for_loop.cpp

[FHxxixx for loop demonstration ** ks
A little program to output a table

http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/control _flow/loops.htm 2004.03.24

Loops Page6 of 9

of factorials

NOTE: The for statement's style is a little unusual
it would normally be written out on one line
for (inti=0;i<10; i++)

I've done it this way to focus on the three
separate expressions in the statement.

!

#include <iostream>
using namespace std; /I cout is in the std namespace

int main(){
int factorial = 1;

/I Output a table heading

cout << "Table of Factorials\n i\t i\n\n"
for (int i= O;
i< 10;
i++) {
if (i'= 0)
factorial *=i;
cout << j<< "t' << factorial << \n'
}
cout << "That's all folks!\n"
return 0;

}

Please note that in both the syntax definition block and the example¢kenternal expressions in the
for loop have been written on separtes.

Thisisnot normal.
for (inti=0;i<10;i++) {

would be the normal way of starting tlee loop

Theinitial expression

is executednce,

before anything else in
thefor loop.

Theloop continuation

condition is executed
before the body of the

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm 2004.03.24

Loops

factorial=

Loop
Continuation
Condition

1

initial expression

factorial

Hi
=l

|

factorial << '\n';

cout << j<< "\t" << J

Loop
Body

4

i++

update expression

L oop Design

1. The general case:
o What should be done in the body?
2. The special cases:

http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/control _flow/loops.htm

Under what condition should the iteration stop?
How should the loop control condition be initialized?
How should the loop control condition be updated?
How should other variables be initialized?

How should other variables be updated?

What is the state when the loop ex

Page7 of 9
loop.
The update expression

is executedhfter the
body of the loop

After theupdate
expression is executec
we goback and test
theloop continuation
condition again

As soon as the
condition is falsethe
flow of control moves
to the statement
immediately after the
loop.

2004.03.24

Loops Page8 of 9
Notice we have put the general case first. Although it may counterintuitive (because when you
read the code thehile or thefor precedes the body of the loop)

Design loops from the inside out (from the general tespesific).

Note the implication here is t

1. first design the loop, then
2. code the loop

Pseudo Code

How can we design before we code?
Enterpseudo code, which we will introduce by example.

Let's consider a program to compute the mark for every student in a dderss.an algorithm
specified in pseudo code

enter the number of students in the course
enter the midterm1, midterm2, assignments, labs andrfiaal(or 0 if none) and percentage
set student to 1
while student <= students
enter mark for each component
compute course mark
increment student

Now consider the problem of entering a mark for each component. Ther: to that. As before, we
need tarefine this step.

enter mark for a component
if max of component > 0
prompt for mark
enter mark
while mark > max or < 0

give error promg

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm 2004.03.24

Loops Page9 of 9

enter mark

Pseudo code is just a refinement of the way we tdugletionaldecomposition.

In pseudo code, we use the control structures of computer programming tatewehat we want to «
in plain english or using any convenienhderstandable notation (e.g. mathematical).

The idea is to get the control structures right.

Let's take the pseudo code and use it to produce a program.

This page last updated on Monday, March 22, 2004

http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/control _flow/loops.htm 2004.03.24

