
A loop is the only control-flow construct that lets you go back to an earlier point in the code. Loops are
designed to allow us to iterate—to execute the same piece of code over and over again.

We'll consider three different kinds of loops

While Loops

A while loop is created by a while statement. Its formal syntax is:

while statement :

Form:
while (Boolean Expression) StatementB

Example:

cin >> grade;
while (grade > 100){
 cout << "Grade can't exceed 100!";
 cin >> grade;
}

Interpretation: A grade is entered and so long as its value exceeds 100 an error prompt is given and
the grade is re-entered

As always StatementB can either be a single statement or a statement block.

We use the B subscript because its often called the body of the loop.

The control flow for the example in the syntax definition looks like this.

The >100 in the decision block is short for grade > 100 of the
example

That boolean expression represents a loop continuation condition

If the condition is true the body of the loop is executed.

After the body is executed, we go back and test the loop
continuation condition again

As soon as the condition is false, the flow of control moves to the
statement immediately after the loop.

Page 1 of 9Loops

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

Here we use the while loop to generate a conversion table from degrees centigrade to degrees
fahrenheit.

while_1.cpp

#include <iostream>
using namespace std;

/*********** a while loop ****************

 Using a loop to generate a conversion table
 between degrees C and degrees F.

***/

int main(){
 int tempC = 0;

 cout << "A temperature conversion table\n\n" ;
 cout << "centigrade\tfahrenheit\n" ;
 cout << " -------------------------------------- \n" ;

 while (tempC <= 100) {
 cout << " " << tempC << "\t\t\t" ;

 cout << (9*tempC)/ 5 + 32 << '\n' ;

 tempC += 5;

Page 2 of 9Loops

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

Loop Categories

There are a number of well-recognized loop categories, some of which we outline here

Count-Controlled Loops

When you know how many times to iterate.

Note that the first example (temperature conversion) is basically a variation on this theme.

Event-Controlled Loops

Iteration continues until some event occurs in the body of the loop. Here's an example:

sum.cpp

sum1.cpp

 }

 cout << " -------------------------------------- \n" ;
 return 0;
}

int main() {
 double sum = 0.0 ; // Accumulator for sum of values
 double val; // Value input by user
 int num = 0; // Number of values to sum
 int count = 0; // Number of values input so far

 cout << "This program calculates the sum of the values entered.\n" ;
 cout << "How many values will you sum:" ;
 cin >> num;
 while (count < num) {
 cout << "Please enter a value: " ;
 cin >> val;
 sum = sum + val;
 count++;
 }
 cout << "The sum is: " << sum << endl;

 return 0;
}

int main() {
 double sum = 0.0 ; // Accumulator for sum of values
 char ans = 'y' ; // Answer from user
 double val; // Value input by user

 cout << "This program calculates the sum of the values entered.\n" ;

Page 3 of 9Loops

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

In this case, the event is a decision by the user to stop entering numbers.

Sentinel-Controlled Loops

� The termination condition is a special value read from input.

� The special value is called a sentinel or trailer value .

� The sentinel must not be a valid input value.

cin >> x; // read first value
while (x != - 1) { // loop until sentinel value is read.
 // process x
 cin >> x; // get the next value
}

Alternative (use side-effects and shortcut evaluation):

while (cin >> x && x != - 1) { // - 1 is sentinel
 // process x
}

average.cpp

 while (ans == 'y') {
 cout << "Please enter a value: " ;
 cin >> val;
 sum = sum + val;
 cout << "Do you want to add another value? (Enter y or n) " ;
 cin >> ans;
 }
 cout << "The sum is: " << sum << endl;

 return 0;
}

int main() {
 double sum = 0.0 ; // Accumulator for sum of values
 int count = 0; // Counter for number of values
 double val; // Value input by user
 double avg; // Average of values

 cout << "This program calculates the average of a sequence of" << endl;
 cout << "positive values.\n" ;
 cout << "Please enter the values (enter a negative value to exit): " ;
 cin >> val;
 while (val > 0) {
 sum = sum + val;
 count++;
 cin >> val;
 }
 if (count > 0) {
 avg = sum / double (count);
 cout << "The average is: " << avg << endl;
 } else {
 cout << "No values were entered.\n" ;

Page 4 of 9Loops

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

Flag-Controlled Loops

flag—A Boolean variable used to control logical flow.

bool positive = true; // flag, set to false when x < 0.
while (positive) {
 cin >> x; // ...
 if (x < 0) {
 positive = false;
 }
}

For Loops

The for statement is particularly well suited for count-controlled loops.

The formal syntax for the for loop is

for statement :

Form:
for (init expression ;
 boolean expression ;
 update expression)
 StatementB

Example:

for (int i = 0; i < 7; i++)
 cout << i * i;

Interpretation: An int i is declared for the duration of the loop and its value initialised to 0. i 2 is
output in the body of the loop and then i is incremented. This continues until i is 7.

Again StatementB is called the body of the loop and it can either be a single statement or a statement

block.

Here's an example of a program that uses the for loop to create a table of factorials.

for_loop.cpp

 }

 return 0;
}

/******* for loop demonstration ********
 A little program to output a table

Page 5 of 9Loops

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

Please note that in both the syntax definition block and the example the three internal expressions in the
for loop have been written on separate lines.

This is not normal.

for (int i = 0; i < 10; i++) {

would be the normal way of starting the for loop

The initial expression
is executed once,
before anything else in
the for loop.

The loop continuation
condition is executed
before the body of the

 of factorials

NOTE: The for statement's style is a little unusual
 it would normally be written out on one line
 for (int i = 0; i < 10; i++)

 I've done it this way to focus on the three
 separate expressions in the statement.

***/

#include <iostream>
using namespace std; // cout is in the std namespace

int main(){
 int factorial = 1;

// Output a table heading
 cout << "Table of Factorials\n i\t i!\n\n" ;

 for (int i = 0;
 i < 10;
 i++) {
 if (i != 0)
 factorial *= i;
 cout << i << "\t" << factorial << '\n' ;
 }

 cout << "That's all folks!\n" ;
 return 0;
}

Page 6 of 9Loops

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

Loop Design
1. The general case:

� What should be done in the body?
2. The special cases:

� Under what condition should the iteration stop?

� How should the loop control condition be initialized?

� How should the loop control condition be updated?

� How should other variables be initialized?

� How should other variables be updated?

� What is the state when the loop exits?

loop.

The update expression
is executed after the
body of the loop

After the update
expression is executed,
we go back and test
the loop continuation
condition again

As soon as the
condition is false, the
flow of control moves
to the statement
immediately after the
loop.

Page 7 of 9Loops

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

Notice we have put the general case first. Although it may seem counter-intuitive (because when you
read the code the while or the for precedes the body of the loop)

Design loops from the inside out (from the general to the specific).

Note the implication here is that

1. first design the loop, then
2. code the loop

Pseudo Code

How can we design before we code?

Enter pseudo code, which we will introduce by example.

Let's consider a program to compute the mark for every student in a course. Here's an algorithm
specified in pseudo code

enter the number of students in the course

enter the midterm1, midterm2, assignments, labs and final max (or 0 if none) and percentage

set student to 1

while student <= students

enter mark for each component

compute course mark

increment student

Now consider the problem of entering a mark for each component. There's a lot to that. As before, we
need to refine this step.

enter mark for a component--->

if max of component > 0

prompt for mark

enter mark

while mark > max or < 0

give error prompt

Page 8 of 9Loops

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

enter mark

Pseudo code is just a refinement of the way we taught functional decomposition.

In pseudo code, we use the control structures of computer programming but we state what we want to do
in plain english or using any convenient, understandable notation (e.g. mathematical).

The idea is to get the control structures right.

Let's take the pseudo code and use it to produce a program.

This page last updated on Monday, March 22, 2004

Page 9 of 9Loops

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/loops.htm

