Pass by Referen Pagel of 8

Side Effects

Arguments in the original C language were always pasgedue. Thiswas done to avoiside effects.
Consider a little different version te factorial function:

&

%k ko ok Sk ko ok ok ok k ok ok ok ok ok ok ok ok ok ok Sk ok ok ok ok o Kk ok ok ok ok o Kk ok ok ok ok o K Kk kR ok kK ok kR ok K Kk

* factorial

post_decrement.cpp

Paranmeters: n: the integer whose factorial is to be conputed
(assert non-negative)

* %k

* Modifies: nothing

*

* Returns: the factorial of n

ok ok ok ok ok ok ok ok ok Kk ok ok ok ok o Kk ko ok ok K Kk kR ok Kk kR ok kR ok k Rk kR kK kR Rk Rk k kR kK Kk k ko

nt factorial (int n){
int result = 1;
while (n > 1)

result *=n--;
return result;

}
The line
result *= n--;

actually contains two potential side effects. Let's focus first on theaursed by decrementing in the
middle of an expression.

The line is equivalent to the following two lines

result *=n;
n--;

That is the original, in one line, both

1. computes the next value oésul t (themain effect) as well as
2. decrements (theside effect).

But when are we decrementing Notice in this second versionstvery clear that is decremented
after we used its previous value.

Post- and Pre- Increment and Decrement

When we increment or decrement, there are actually two forms op#rators, known gsost-
decrement (or poshcrement) anghre-decrement (or preincrement). In the example above the
decremer operator is said to be in the post position (it comes after the variablt decrementec

http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/functions/pass_by_reference.htm 2004.03.24

Pass by Referen Page2 of 8

It is perfectly grammatically correct to put the decrement operator bbforariable as:

result *= --n;

but now it means something different. Again, writing it as two lines we wuegdl to write it this
way—

n--;
result *= n;

Putting an increment/decrement operator in theposition means thahe increment/decrement
operation is carried out before the value of the variable is used.

Here is the same program ammended to useé@reement. Step through botérsions in the teaching
machine to see the difference

H

[Kk ok ok ok ok kk kk k kK K K K K kK Kk Kk ok ok ok ok ok ok k ko k ko k KK KK KKk k ok ok ok kk ok ok ok k ko ko kK kK

* factorial

pre_decrement.cpp

Parameters: n: the integer whose factorial is to be conputed
(assert non-negative)

* % ok

* Modi fies: nothing

*

* Returns: the factorial of n

Kk ok ok ok ok ok k ok ok ok ok ok Kk k ok ok ok ok Kk ok ok ok ok o Kk ok ok ok ok ok Kk ok ok ok ok o Kk Kk ok ok Kk ok kR ok Sk kK k kR ok ok

nt factorial (int n){
int result = n;
while (n > 2)

result *= --n;
return result;

}
While this second version works it is far less understandable than the first.

In fact, in general we regard incorporating incrementing into expressienside effect to be quite
advanced programming

1. We recommend you not use the technique yourself. Instead, increepamately.
2. However, it is a sufficiently common part of the standard @liem that we do expect you to be
able to read and understand cthigt does use it.

Final Caveat

increment/decrement operators should never be incorporated into expressiamnzbles that are used
more than once in the expression.

For exampl

http://www.engr.mun.ca/~mpbl/teaching/2420/| ectures/functions/pass_by_reference.htm 2004.03.24

Pass by Referen Page3 of 8

y = ++n * log(n);

should never be used. Thés incremented on the memory fefghrt of the evaluation cycle and ther
no way to predict which optimizing compilers will decide to fetch first.

Pass-by-Value

We said there were potentially two side effects in the original pieceds. In decrementingwe are
decrementing the value passed in$o In other words, we are changing it.

Passby-value was designed as a security feature to guard against jystothism. Then in the functiol
refers to a local copy of the valoéthe original variable (which just happens to be calledthis
program as well.

Here's the calling part of the original program:

E post_decrement.cpp

int main(){
int n; // the nunber whose factorial is to be conputed
int fact; // its factorial

cout << "A programto conpute factorials." << endl;
cout << "Please enter a non-negative integer: “;
cin >> n;
while (n <0) {
cout << "Factorials can only be conputed for "
<< "non-negative integers. Please enter again:
cin >> n;
}
fact = factorial(n);
cout << "The factorial of " << n << " is " << fact << endl;
return O;

}

Although we changed the valueroin the factorial function itloesn't affect the originalbecauseit is
adifferent variable. This is exactly what pads/-value means. Instead of passing ¢higinal variable t
the factorial function we pass just its value and makevavariable.

Thus, pas$y-valuealways implies copying data. It is this copy othe original variable which is
decremented to inside thefactorial loop.

While this is secure (consider how surprised we would be if the line

cout << "The factorial of " << n << " is " << fact << endl;
printed outl for n in the program above) there dimes when it is not useful.

A Swap Function

http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/functions/pass_by_reference.htm 2004.03.24

Pass by Referen Paged of 8

Consider the following highly desirable function:

E FRUN non_swap.cpp

/1 Atotally useless function!!!

void intswap(int x1, int x2){

int tenp;
temp = x1;
x1 = x2;

X2 = tenp;

}

The idea behind this swap routine is that it swaps the values of a paiiaijles around. Swap routines
are widely used. As we will find out, atbutines to sort data into some sort of order work by comparing
two pieces oflata and, if they are out of order, swapping them.

If you run the routine TM you will find the swapping works just fine.

The only problem is, nothing happens from the calling routprexr'spective.

3
E RUN non_swap.cpp

int main(){
int a=2;
int b =3;

intswap(a, b);
cout << "ais " << a<<" and bis " << b << endl;
return O;

}

As we saw, thént Swap function merrily swapg1 andx2, buta andb are untouched becauseisa
copy of a and x2 is a copy of b!

In the case of the factorial function, this behaviour was a desgabigity feature.

Now suddenly its a bug. How can we get arour

Pass-by-Reference

C++ inherited C's pagsy-value design. But C++ added a new operéatcalled thereference operator
to take care obccasions when we really would like to use the original variables in a furetébnot
just the value:

Here's a new version of thet Swap function that uses thigass-by-reference technique.

http://www.engr.mun.ca/~mpbl/teaching/2420/| ectures/functions/pass_by_reference.htm 2004.03.24

Pass by Referen Page5 of 8

E T RUN int_swap.cpp

/1 A useful function!!!

void intswap(int& x1, int& x2){

int tenp;
temp = x1;
x1 = x2;

X2 = tenp;

The only thing that has changed is the declaration of the two furaruments.

Now, instead ox1 andx2 beingi nt s, they are formally calledef erences to ints. In thesyntax of
C++areference to int (orreference to double orreference to an object of class
string) is adistinctly different type from ani nt (ordoubl e orobj ect of class string).

the variables are the function parameters and they are copies of the edgiabales.

Note that the call to the p«by-reference (useful) version of thet Swap function is identical to the
(useless) padsy-valueversion.

E T RUN int_swap.cpp

intswap(a,b);
cout << "ais " << a<<" and bis " << b << endl;
return O;

}

Notice, there icno way you can tell by looking at a call whetherthe arguments are being passed by \
or by reference. Yobave to look at the function declaration to know.

void intSwap(int& x1, int& x2);

is the declaration for a function that passes its arguments by refevbitee

int factorial (int n);

is the declaration for a function that passes its arguments by value.

Pass-by-Reference for Multiple Outputs

We have said that arguments represeninputs to a function whil its return value (if there is on

http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/functions/pass_by_reference.htm 2004.03.24

Pass by Referen Page6 of 8

represents itsutput.
You have already discovered that there are times when the limitaticsirgfla output can be awkward.
However, arguments that are passed by reference can be both inpodsparts.

Consider the following example:

i .
E RUN triangle_area.cpp

int main(){
fl oat tBase;
float tHeight;

cout << "A programto calculate the area of a triangle." << endl;

get Val ues(tBase, tHeight);
cout << "The area is " << tBase * tHeight / 2 << endl;
return 0;

voi d getVal ues(float& base, float& height) {
string pronpt;
pronpt = "base";
base = getFl oat (pronpt);
pronpt = "height";
hei ght = get Fl oat (pronpt);

As usual we like to modularize our problem using functions. As we havedstenon irclass
examples we hide the ugly details of prompting for @tckiving values in a function.

And how often, when faced with that very problem, have we not said or thooghtice it would be to
return multiple values at once?

Well we can't actually return multiple values. But we dopesgsby-reference to have thyet val ues
function set both thease and thenei ght for us.

To make sure it works we have to make sure we give it variables for argumtemtsve make the call
and not just values.

Const References
The display above doesn't actually showdéier! oat functionimplementation or declaration. If you'

run the example in the TM already ymay have noticed something strange about them. Here's the
implementation.

http://www.engr.mun.ca/~mpbl/teaching/2420/| ectures/functions/pass_by_reference.htm 2004.03.24

Pass by Referen Page7 of 8

i .
E RUN triangle_area.cpp

float getFloat(const string& what){
float thelnput;

cout << "\nPlease input a value for " << what << ": *;

cin >> thel nput;
return thel nput;

What's up with the const keyword in the function prototype

float getFloat(const string& what)

In the first place why not just pass the string by value as we would nomio&jfter all we don't want
to change it. It's just input for the function.

Remember that pads/-value means a copy gets made. In this case a full @i string object
(although you won't see it reflected in your simple mermmooglel on the TM-it's done behind the
scenes in another part of memory calledibap that we won't talk about until the advanced course).
Making such a copy ipotentially very expensive because strings can be very large.

1. It's expensive because it takise to make the full copy.
2. It's expensive because it talextra memory to hold the copy.

Passingby-reference suppresses copying. The only thing passed infanitteon is the reference to the
original object (which is about the size ofian orl ong).

However, there is an implication when we pass by reference that the variible modified.

Theconst tells the compiler (and more importantly, any cliemt® are going to use our function) that
althoughpr onpt is beingpassed by referendewill not be modified. In other words, it iseadonly.

Summary

1. passhy-value means a copy is made of the original data.
2. copying the original data means that any original variables "passedtiniotan can not be

modified.

3. passby-reference allows variables passed to a function as argumentsnudifeed by the
function.

4. passby-reference gives us a way for a function to "return" multyalieles.

5. passby-reference suppresses copying

6. Putting const in front of a reference parameter signifies it will nohdeified by the function.

7. For primitive parameters (e.goubl e, i nt , char) always use padsy-value unless a parameter is
to bemodified.

8. For objects, always usenst passby-reference (unlessgarameter is to be modified in which

http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/functions/pass_by_reference.htm 2004.03.24

Pass by Referen Page8 of 8
case drop theonst).

This page last updated on Monday, March 22, 2004

http://www.engr.mun.ca/~mpbl/teaching/2420/l ectures/functions/pass_by_reference.htm 2004.03.24

