
Side Effects

Arguments in the original C language were always passed by value. This was done to avoid side effects.
Consider a little different version of the factorial function:

The line

result *= n--;

actually contains two potential side effects. Let's focus first on the one caused by decrementing in the
middle of an expression.

The line is equivalent to the following two lines

result *= n;
 n--;

That is the original, in one line, both

1. computes the next value of result (the main effect) as well as
2. decrements n (the side effect).

But when are we decrementing n? Notice in this second version it is very clear that n is decremented
after we used its previous value.

Post- and Pre- Increment and Decrement

When we increment or decrement, there are actually two forms of the operators, known as post-
decrement (or post-increment) and pre-decrement (or pre--increment). In the example above the
decrement operator is said to be in the post position (it comes after the variable being decremented).

post_decrement.cpp

 /**
 * factorial
 *
 * Parameters: n: the integer whose factorial is to be computed
 * (assert non-negative)

 * Modifies: nothing
 *
 * Returns: the factorial of n
 ***/

int factorial(int n){
 int result = 1;
 while (n > 1)
 result *= n--;
 return result;
}

Page 1 of 8Pass by Reference

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/pass_by_reference.htm

It is perfectly grammatically correct to put the decrement operator before the variable as:

result *= --n;

but now it means something different. Again, writing it as two lines we would need to write it this
way—

n--;
result *= n;

Putting an increment/decrement operator in the pre- position means that the increment/decrement
operation is carried out before the value of the variable is used.

Here is the same program ammended to use pre-decrement. Step through both versions in the teaching
machine to see the difference

While this second version works it is far less understandable than the first.

In fact, in general we regard incorporating incrementing into expressions as a side effect to be quite
advanced programming

1. We recommend you not use the technique yourself. Instead, increment separately.
2. However, it is a sufficiently common part of the standard C++ idiom that we do expect you to be

able to read and understand code that does use it.

Final Caveat

increment/decrement operators should never be incorporated into expressions on variables that are used
more than once in the expression.

For example

pre_decrement.cpp

 /**
 * factorial
 *
 * Parameters: n: the integer whose factorial is to be computed
 * (assert non-negative)

 * Modifies: nothing
 *
 * Returns: the factorial of n
 ***/

int factorial(int n){
 int result = n;
 while (n > 2)
 result *= --n;
 return result;
}

Page 2 of 8Pass by Reference

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/pass_by_reference.htm

y = ++n * log(n);

should never be used. The n is incremented on the memory fetch part of the evaluation cycle and there is
no way to predict which n optimizing compilers will decide to fetch first.

Pass-by-Value

We said there were potentially two side effects in the original piece of code. In decrementing n we are
decrementing the value passed into us. In other words, we are changing it.

Pass-by-value was designed as a security feature to guard against just this problem. The n in the function
refers to a local copy of the value of the original variable (which just happens to be called n in this
program as well.

Here's the calling part of the original program:

Although we changed the value of n in the factorial function it doesn't affect the original n because it is
a different variable. This is exactly what pass-by-value means. Instead of passing the original variable to
the factorial function we pass just its value and make a new variable.

Thus, pass-by-value always implies copying data. It is this copy of the original variable which is
decremented to 1 inside the factorial loop.

While this is secure (consider how surprised we would be if the line

 cout << "The factorial of " << n << " is " << fact << endl;

printed out 1 for n in the program above) there are times when it is not useful.

A Swap Function

post_decrement.cpp

int main(){
 int n; // the number whose factorial is to be computed
 int fact; // its factorial

 cout << "A program to compute factorials." << endl;
 cout << "Please enter a non-negative integer: ";
 cin >> n;
 while (n < 0) {
 cout << "Factorials can only be computed for "
 << "non-negative integers. Please enter again: ";
 cin >> n;
 }
 fact = factorial(n);
 cout << "The factorial of " << n << " is " << fact << endl;
 return 0;
}

Page 3 of 8Pass by Reference

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/pass_by_reference.htm

Consider the following highly desirable function:

The idea behind this swap routine is that it swaps the values of a pair of variables around. Swap routines
are widely used. As we will find out, all routines to sort data into some sort of order work by comparing
two pieces of data and, if they are out of order, swapping them.

If you run the routine TM you will find the swapping works just fine.

The only problem is, nothing happens from the calling routine's perspective.

As we saw, the intSwap function merrily swaps x1 and x2, but a and b are untouched because x1 is a
copy of a and x2 is a copy of b!

In the case of the factorial function, this behaviour was a desirable security feature.

Now suddenly its a bug. How can we get around it?

Pass-by-Reference

C++ inherited C's pass-by-value design. But C++ added a new operator & called the reference operator
to take care of occasions when we really would like to use the original variables in a function and not
just the values.

Here's a new version of the intSwap function that uses this pass-by-reference technique.

non_swap.cpp

non_swap.cpp

 // A totally useless function!!!

void intswap(int x1, int x2){
 int temp;

 temp = x1;
 x1 = x2;
 x2 = temp;
}

int main(){
 int a = 2;
 int b = 3;
 intswap(a,b);
 cout << "a is " << a << " and b is " << b << endl;
 return 0;
}

Page 4 of 8Pass by Reference

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/pass_by_reference.htm

The only thing that has changed is the declaration of the two function arguments.

Now, instead of x1 and x2 being ints, they are formally called references to ints. In the syntax of
C++ a reference to int (or reference to double or reference to an object of class
string) is a distinctly different type from an int (or double or object of class string).

the variables are the function parameters and they are copies of the original variables.

Note that the call to the pass-by-reference (useful) version of the intSwap function is identical to the
(useless) pass-by-value version.

Notice, there is no way you can tell by looking at a call whether the arguments are being passed by value
or by reference. You have to look at the function declaration to know.

void intSwap(int& x1, int& x2);

is the declaration for a function that passes its arguments by reference while

int factorial(int n);

is the declaration for a function that passes its arguments by value.

Pass-by-Reference for Multiple Outputs

We have said that arguments represent the inputs to a function while its return value (if there is one)

int_swap.cpp

int_swap.cpp

 // A useful function!!!

void intswap(int& x1, int& x2){
 int temp;

 temp = x1;
 x1 = x2;
 x2 = temp;
}

int main(){
 int a = 2;
 int b = 3;
 intswap(a,b);
 cout << "a is " << a << " and b is " << b << endl;
 return 0;
}

Page 5 of 8Pass by Reference

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/pass_by_reference.htm

represents its output.

You have already discovered that there are times when the limitation of a single output can be awkward.

However, arguments that are passed by reference can be both inputs and outputs.

Consider the following example:

As usual we like to modularize our problem using functions. As we have often done on in-class
examples we hide the ugly details of prompting for and retreiving values in a function.

And how often, when faced with that very problem, have we not said or thought how nice it would be to
return multiple values at once?

Well we can't actually return multiple values. But we do use pass-by-reference to have the getValues
function set both the base and the height for us.

To make sure it works we have to make sure we give it variables for arguments when we make the call
and not just values.

Const References

The display above doesn't actually show the getFloat function implementation or declaration. If you've
run the example in the TM already you may have noticed something strange about them. Here's the
implementation.

triangle_area.cpp

int main(){
 float tBase;
 float tHeight;

 cout << "A program to calculate the area of a triangle." << endl;

 getValues(tBase, tHeight);
 cout << "The area is " << tBase * tHeight / 2 << endl;
 return 0;
}

void getValues(float& base, float& height) {
 string prompt;
 prompt = "base";
 base = getFloat(prompt);
 prompt = "height";
 height = getFloat(prompt);
}

Page 6 of 8Pass by Reference

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/pass_by_reference.htm

What's up with the const keyword in the function prototype

float getFloat(const string& what)

In the first place why not just pass the string by value as we would normally do? After all we don't want
to change it. It's just input for the function.

Remember that pass-by-value means a copy gets made. In this case a full copy of the string object
(although you won't see it reflected in your simple memory model on the TM—it's done behind the
scenes in another part of memory called the heap that we won't talk about until the advanced course).
Making such a copy is potentially very expensive because strings can be very large.

1. It's expensive because it takes time to make the full copy.
2. It's expensive because it takes extra memory to hold the copy.

Passing-by-reference suppresses copying. The only thing passed into the function is the reference to the
original object (which is about the size of an int or long).

However, there is an implication when we pass by reference that the variable will be modified.

The const tells the compiler (and more importantly, any clients who are going to use our function) that
although prompt is being passed by reference it will not be modified. In other words, it is read-only.

Summary

1. pass-by-value means a copy is made of the original data.
2. copying the original data means that any original variables "passed" to a function can not be

modified.
3. pass-by-reference allows variables passed to a function as arguments to be modified by the

function.
4. pass-by-reference gives us a way for a function to "return" multiple values.
5. pass-by-reference suppresses copying
6. Putting const in front of a reference parameter signifies it will not be modified by the function.
7. For primitive parameters (e.g. double, int, char) always use pass-by-value unless a parameter is

to be modified.
8. For objects, always use const pass-by-reference (unless a parameter is to be modified in which

triangle_area.cpp

float getFloat(const string& what){
 float theInput;

 cout << "\nPlease input a value for " << what << ": ";
 cin >> theInput;
 return theInput;
}

Page 7 of 8Pass by Reference

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/pass_by_reference.htm

case drop the const).

This page last updated on Monday, March 22, 2004

Page 8 of 8Pass by Reference

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/pass_by_reference.htm

