
Scope Page 1 of 3

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/scope.html 2004.01.30

Scope is an attribute (or property) of an identifier (or name).

The scope of an identifier is the region of the program code in which it can be used.

local scope
An identifier declared within a block (braces { })

scope extends from declaration to end of block.
parameter scope extends to the whole function definition.

global scope
An identifier declared outside all blocks.

scope extends from declaration to the end of the compilation unit
(source file).

As a property of names, it applies to

� variable names

� constant names

� function names

� class names

as well as to other names.

A do-nothing example with many of the names declared multiple times.

Mouse Instructions
To find out what the scope of a name is roll the mouse over where the name
is first declared. Note that if you click on the names you can freeze the scope
marking, letting you scroll around the program. Click on the same name again
to turn it off.

scope_demo.cpp

/**
 * Memorial University of Newfoundland
 * Engineering 2420 Structured Programming
 * scopeDemo.cpp -- A silly demo of scope
 *
 * Input: none
 * Output: none
 *
 * Author: Michael Bruce-Lockhart
 *
 ***/
#include <iostream>

Scope Page 2 of 3

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/scope.html 2004.01.30

Scope & visibility are slightly different

It is possible for a name to be in scope but not be visible

There are lots of john's and mary's in the example above. Like families, the scope
of many of them overlap. How do we know which is which?

We repeat the same example below, only now we have marked it for visibility. Note
that the first john, which is declared at the external level, is only visible at the
external level as well as inside functionFoo. This is because main and functionFoo
have their own johns. We say these johns occlude the other one.

visibility_demo.cpp

using namespace std;

int john = 3;
int mary = 4;

void functionFoo();
void functionFaa();

int main(){
 int john = 2;
 int mary = 1;

 { int jules = 0;
 mary += jules;
 cout << "Inside block: jules is " << jules << " and mary is " << mary;
 cout <<endl;
 }
 cout << "\nAfter block: john is " << john << " and mary is " << mary;
 cout <<endl;
 functionFoo();
 cout << "\nAfter function: john is " << john << " and mary is " << mary;
 cout <<endl;
 return 0;
 }

void functionFoo(){
 int john = 17;
 int mary = 13;
 cout << "\nInside functionFoo: john is " << john << " and mary is " << mary;
 cout << endl;
 }

void functionFaa(){
 int mary = 29;
 cout << "\nInside functionFaa: john is " << john << " and mary is " << mary;
 cout << endl;
}

/***
 a (silly)demonstration of Visibility

Scope Page 3 of 3

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/functions/scope.html 2004.01.30

� Try to keep the scope of variables small—it can make your code easier to
read and modify.

� Prefer local variables over global variables.

� Use parameters rather than global variables to pass information to functions.

� If your parameter list is too long maybe your function is doing too much.

A more detailed discussion of the concept of scope is available here.

**/
#include <iostream>
using namespace std;

int john = 3;
int mary = 4;

void functionFoo();
void functionFaa();

int main(){
 int john = 2;
 int mary = 1;

 for (int jules = 0; jules < 5; jules++){
 mary += jules;
 cout << "Inside loop: jules is " << jules << " and mary is " << mary;
 cout <<endl;
 }
 cout << "\nAfter loop: john is " << john << " and mary is " << mary;
 cout <<endl;
 functionFoo();
 cout << "\nAfter function: john is " << john << " and mary is " << mary;
 cout <<endl;
 return 0;
 }

void functionFoo(){
 int john = 17;
 int mary = 13;
 cout << "\nInside functionFoo: john is " << john << " and mary is " << mary;
 cout << endl;
 }

void functionFaa(){
 int mary = 29;
 cout << "\nInside functionFaa: john is " << john << " and mary is " << mary;
 cout << endl;
}

