
Below is a representation of a stream which is a sequence of characters used for input or output

Each stream has a stream buffer pointer which advances through the steam character by character.

If the above were the input stream and we wrote the following code

char next;
cin >> next;

The initial space would be skipped. The pointer would advance to the next non-whitespace character, a,
and read that into next , then move to the character after, leaving it like so

If we were to write a loop

char next;
cin >> next;
while (!cin.fail()) {
 // do something with next
 cin >> next;
}

and the pointer were to start at the n as above, next would be set to 'n', '3', '4', '.', '7', 't',

'o', 'n' and finally '1' in turn. The whitespace (' ' and '\n') would be skipped over.

The fail() method of class istream returns true after we try to read in the character if the operation
failed for any reason whatsoever (for example, there are no more characters in the istream).

There is no way to look at the istream before we read the character to tell if its going to fail.

Extracting Formatted Data from cin

Suppose we had the pointer in this position

Page 1 of 4Streams & Files

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/files.htm

and were to write

float next;
cin >> next;

Since next has been declared a float here, the input stream extraction operator will try to extract a
number. In this case next would be set to 34.7 and the pointer would end up like so

That is, the pointer stops as soon as the character under it cannot be part of the number.

Where would it have stopped if next had been declared an int ?

Obviously, to use the extraction operator successfully, we must know ahead of time what kind of data to
expect.

If we try to extract to an int variable with the pointer in the position shown above, the variable will end
up undefined.

Reading All Characters

There are times when we would like to read every character (including whitespace). Instead of using the
extraction operator >> we can utilize another member function of class istream , the get() function.

Here's a program to count words in the input stream. It assumes the stream only contains text.

word_count.cpp

int main(){
 long wordCount = 0;
 char next;
 bool inWord = false ;

 cin .get (next);
 while (!cin .fail ()) {
 if (isWhiteSpace(next))
 inWord = false ;
 else if (!inWord) { // First letter in word
 inWord = true ;
 wordCount++;
 }
 cin .get (next);
 }

Page 2 of 4Streams & Files

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/files.htm

Files

A file is a named area on a secondary storage device (e.g., disk).

In C++ files are streams, similar to cout and cin .

Files have to be opened before they can be used, (and should be closed when we're done with them).

File Types

ifstream —input file stream. Program can read from it using >> , get or getline .

ofstream —output file stream. Program can write to it using << .

Input/Output Redirection

On Unix, Cygwin, or in a DOS window:

myprog < mydata.txt —run myprog using mydata.txt for the standard input (cin).

myprog > myoutput.txt —run myprog using myoutput.txt for the standard output (cout).

myprog < mydata.txt > myoutput.txt —run myprog using mydata.txt for the standard input, and
myoutput.txt for the standard output.

file.cpp

 cout << "\n\nThere were " << wordCount << " words." << endl;

 return 0;
}

bool isWhiteSpace(char c){
 return c == ' ' || c == '\n' || c == '\t' ;
}

#include <iostream>
#include <fstream>
using namespace std;

int main(){
 ifstream inData;
 int x;

 inData .open ("mydatafile.dat");
 inData >> x; // read from inData into the variable x
 // use file ...
 inData .close (); // finished with file.
}

Page 3 of 4Streams & Files

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/files.htm

Here's a little program that reads the input stream and copies it to the output stream, capitalizing every
letter as it goes.

Programs that simply relay chars from the input to the output stream, possibly changing them as they do
so, are known as filters.

The program above doesn't appear to run so well in the TM because both the input stream and the output
stream appear on the console together. But they actually are separate streams!

Filter programs are really designed to work with files, using i/o redirection. For example, if I take the
executable version of the above program, I could use it to capitalize any file by running the following
command:

to_caps < someFile.txt > newFile.txt

This page last updated on Monday, March 22, 2004

to_caps.cpp

int main(){
 char next;

 cin .get (next);
 while (!cin .fail ()) {
 if (next >= 'a' && next <= 'z')
 next += 'A' - ' a' ;
 cout << next; // Copy next to output
 cin .get (next);
 }

 return 0;
}

Page 4 of 4Streams & Files

2004.03.24http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/files_and_arrays/files.htm

