Tables

Searching, at best, can be done in $O(\log(n))$ time.

Array indexing is $O(1)$ — can we do information retrieval that quickly?

Generalize arrays as tables — may be n-dimensional.

Since memory is 1-dimensional, we need to convert the index (sequence of integers) to an address:

- **Row-major ordering** elements in the same row are adjacent
- **Column-major ordering** elements in the same column are adjacent

C++ (and most languages) uses Row-major ordering, i.e.,

```cpp
int A[10][5]; // 10 rows, 5 columns
for (int r = 0; r < 10; r++) {
    for (int c = 0; c < 5; c++) {
        cout << A[r][c]; // output in order in memory
    }
}
```

The location (address) of $A[r][c]$ is the same as the address of $A[0][0]$ plus $5r + c$.

$5r + c$ is an **index function** — it maps an index to a location

For irregular tables (i.e., rows are of varying lengths) store the offset to the start of each row in a separate access array.

Several access arrays can be used to give different sort orders for the same data (e.g., by name, by phone number, by address).

Table Specification (a.k.a. Map)

Description Map from the index set, I, to the base type, T.

State A function $F : I \mapsto T$ (Equivalently a set $F \subseteq (I \times T)$)

Operations

- **table()** — Constructor.

 Post: $F = \emptyset$ F is the empty set.

- **table()** — Destructor.

- **T retrieve(I i)** — Table access.

 Post: $\text{Result} \in t \ s.t. (i, t) \in F$ Result is the value indexed by i.

- **insert(I i, T t)** — Insert (i, t) into F

 Post: $(i, t) \in F'$ $\neg (\exists r \in T, r \neq t \land (i, r) \in F')$ i indexes t in the new table.

- **remove(I i)** — Remove (i, t) from F

 Post: $\neg (\exists t \in T, (i, t) \in F')$ The value indexed by i is not in the table.

- Retrieval should be $O(1)$ time.

- There is no requirement of order on I—traversal of a table doesn’t always make sense.

- The index set I need not be integers or other numeric type (but we need to figure out some way to map it to natural numbers).
Hash Tables

sparse table: I is large but the domain is relatively small. (i.e., we don’t expect to use all of I)

In a hash table many different indices map to the same location in the array (called a bucket).

A Hash Function maps from index to bucket.

Characteristics of a good hash function:
• Easy and quick to compute.
• Give an even distribution of actual data throughout table.
• Must be deterministic and stateless—the same argument must always give the same result.

Example hash functions:
- **Truncation** ignore part of the key, use the rest (e.g., 9530365 maps to 365).
- **Folding** partition key into parts, combine the parts (e.g., 9530365 maps to (953 + 36 + 5) = 994).
- **Modular Arithmetic** convert to an integer (using one of the above) and take % # of buckets.
 - Distribution is dependent on divisor (# of buckets).
 - Choose prime number. Why?

A collision occurs when the bucket is already in use.

Collision Resolution: Open Addressing

When a collision occurs (either insert or retrieve) we must choose/search a new location.

Linear Probing Try the adjacent bucket until we find a space.

Clustering is a problem—buckets tend to fill up in clusters, which increases probability of collision.

Rehashing Use a second (third, fourth . . .) hashing function.

Quadratic Probing If h fails, try h + 1, then h + 4, h + 9, . . . , h + i^2

If the table size is prime then this will check up to half of the buckets.

Let n be the number of entries in the table and t be the number of buckets.

Load factor (\(\lambda = n/t \)) — the ratio of full buckets to the total # of buckets. \((0 \leq \lambda \leq 1)\)

- Insertion/retrieval becomes slower (more collisions) as \(\lambda \) approaches 1.
- Quadratic probing may overflow if \(\lambda \geq 0.5 \).
- Worst case insertion/retrieval time complexity = \(O(n) \).
- When an item is deleted the bucket must be marked specially.
 - Empty cells are used to stop probing.
 - Need to distinguish between “never been full” and “was full, now empty”
- Algorithms are complicated by deletion.
Collision Resolution: Separate Chaining

Each bucket contains a list of elements.

- Space efficient if records are large.
- Overflow is not a problem (i.e., λ is limited only by available memory).
- Deletion is easy.

But . . .

- Overhead for lists (may be significant if records are small).
- Worst case time complexity is still $O(n)$.

Analysis

How many “probes” (comparisons) does it take to retrieve an element?

Chaining

Assume list it has k entries.

Assume uniform distribution: $E(k) = n/t = \lambda$

Unsuccessful search will search the whole list $E(\text{probes}) = \lambda$

Successful search will, on average, search half of it ($\frac{1}{2}(k + 1)$), but $E(k) = 1 + (n - 1)/t \approx 1 + \lambda$ so $E(\text{probes}) = 1 + \frac{\lambda}{2}$

Open Addressing

Linear probing:

$$E(\text{probes}) = \begin{cases}
\frac{1}{2} \left(1 + \frac{1}{1-\lambda} \right) & \text{if successful} \\
\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right) & \text{if unsuccessful}
\end{cases}$$