
Aspect Oriented
Programming
Engineering 7893 – Software Engineering

A Formal Definition

 “Aspect-oriented programming is a
programming paradigm that increases
modularity by allowing the separation
of cross-cutting concerns, forming a
basis for aspect-oriented software
development.”
 (Wikipedia)

AspectJ
  Possibly the most common and easily accessible

Aspect Oriented Programming language is
AspectJ. AspectJ is an extension of the Java
language, and as such will generally have
familiar syntax and concepts. There is a plugin
available for Eclipse, the link will appear in the
references at the end of the presentation. All of
the following definitions and examples will be
using the AspectJ terminology and language.

Some Key Concepts
 Cross-Cutting Concerns
  These are issues which are common to more than

one class, potentially across more than one
package. Some examples of these kinds of
concerns include (but are in no way limited to):

  Security

  Logging

  Debugging

  Pre-Conditions

  Post-Conditions

  Change Monitoring

Some Key Concepts
 Aspect
  The AOP equivalent of a class. It contains pointcut

definitions and advice which are executed at the
join points defined by the combination of the advice
and the pointcuts. It may also contain inter-type
declarations.

  Inter-Type Declarations
  This concept allows users to add methods to pre-

existing classes which may not necessarily belong in
a single class, but may be useful over the bounds of
several classes.

Some Key Concepts
  Join Points
  Join Points are places in the body of a code

segment where a piece of advice could happen.
Note: Join Points are a concept. They are never
defined or realized in any way.

  Pointcut
  A definition of all the places (Join Points) where a

piece of advice will be executed.

 Advice
  The code which will be executed when a Join Point

which is defined by a pointcut is reached.

Concept Summary
 When using Aspect Oriented Programming, we

declare aspects (classes) which may contain
advice (methods) as well as pointcuts (A way of
calling the methods at particular times.) So
essentially, we can create a class which is able to
call it’s own methods at specific times which are
defined by the programmer.

Putting it Together
 When defining pointcuts inside an aspect, a

programmer is not limited to choosing join points
from within a single class or even package inside
the project. This allows a single piece of advice
to be applied to any number of different
locations in a project. As such, concerns which
have merit inside of completely unrelated regions
can be addressed without having to relate
segments of code which should not be related.

Simple Examples
  The following is a series of simple examples which

will be used to explain the basic concepts of
Aspect Oriented Programming.

 All of the simple examples revolve around the
Point class in Java. This means that it doesn’t
matter where in a section of code a Point may
have been used as a part of another data
structure, the changes made by the AOP section
of code will apply to every Point which is
created.

Pointcut Examples
  call(void Point.setX(int))
  This is a very simple pointcut. It defines a join point

which occurs when a call is made to the setX(int)
method of the Point class.

  call(void Point.set*(int))
  This is another simple pointcut, this time using a wild

card. It defines a join point which occurs when a
call is made to any method of the Point class which
begins with “set” and takes an int as a parameter.

Pointcut Examples
  call(void Point.set*(..))
  Building on the previous example, this pointcut

defines a join point which occurs whenever a call is
made to any method of the Point class which begins
with “set”, but this time it can take any parameters
at all instead of just a single int.

  call(public * Point. *(..))
  This pointcut defines a join point which happens

whenever a call is made to a public method of the
Point class which can be called anything, can return
anything, and can take any parameters at all.

Pointcut Examples
  pointcut set(): call(void Point.set*(..));
  Pointcuts can also be named, which allows them to

be used to specify when advice should happen
simply by using their name.

  pointcut access(): call(void Point.set*(..)) ||
call(int Point.get*(..));
  Pointcuts can be joined using the logical operators

or (||), and (&&), and not (!). This defines a join
point that happens when a call is made to any
method that begins with “set” or any method that
begins with “get” and returns an int.

Advice Examples
  There are three kinds of advice, advice which is

run before a join point is executed, advice which
is run after a join point is executed, and advice
which is run around a join point. Around advice
is a more complex topic, and won’t be covered
in this presentation.

Advice Examples
  before(): set() {

 System.out.println(“About to change position.”);

 }
  Before advice is run when a join point is reached, but

before the call defined by the pointcut is made.

Advice Examples
  after() returning: set() {

 System.out.println(“Position has been changed.”);

 }
  After advice is run when the control of the program

is returned to the join point. This happens when the
call defined by the pointcut returns.

  Because a Java method can either return normally,
or throw an exception, after advice can have three
different forms. after() returning, after() throwing,
and after(). The plain after() happens after either
throwing or returning.

Advice Examples
before(Point p, int x, int y):

 call(void
Point.setLocation(int, int))
&& target(p) && args(x, y) {

 System.out.println(“Position
of “ + p + ” will be changed
to: (“ + x + “, “ + y + “)”);

 }

  Advice and pointcuts can
be modified to expose
information about the call
being made at that
pointcut. This is done using
the target and args
primitives. “target” returns
the object in which the
method is being called.
“args” returns the
arguments passed to the
function in the same order
as they are being passed.

Aspect Example
aspect SimpleAspect {

pointcut set(): call(void Point.set*(..));

before(): set() {

System.out.println(“About to move!”);

}

after(): set() {

System.out.println(“Just moved!”);

}

}

  An aspect is much like a class in that
it wraps up a group of related
concerns and packages them into
one convenient location so that it is
easily found and modified.

  Aspects never need to be
instantiated, they are all similar in
functionality to singleton classes in
that there is only one instance of
each aspect and it is created at
compile time. An aspect will
perform it’s own advice based on
it’s own pointcuts.

Inter-Type Declarations
aspect PointExtension {

private double Point.orientation = 0;

public static double getOrientation(Point
p){

return p.orientation;

}

after(int x, int y): call(void
Point.setLocation(int, int)) && args(x,y) {

orientation = Math.atan2(x,y);

}

}

  Aspects can be used to add
information to a class. In the example
to the left, the Point class has been
made to have an orientation field
which updates itself automatically
whenever a call is made to
setLocation().

  This example is not terribly useful, as it
could just as easily be realized by
extending the point class. This
functionality is more useful as shown on
the following slide when used to define
interactions between more than one
type of class. Assume that a “Screen” is
equivalent to a Canvas.

  The example on the following page is
taken from the AspectJ introduction
which is listed in the references.

Inter-Type Declarations
aspect PointObserving {

private Vector Point.observers = new Vector();

public static void addObserver(Point p, Screen s) { p.observers.add(s); }

public static void removeObserver(Point p, Screen s) { p.observers.remove(s); }

pointcut changes(Point p): target(p) && call(void Point.set*(int));

after(Point p): changes(p) {

Iterator iter = p.observers.iterator();

while (iter.hasNext()) {

updateObserver(p, (Screen)iter.next());

}

}

static void updateObserver(Point p, Screen s) { s.display(p); }

}

Situational Examples
  So far, most of the examples which have been

given were used simply to explain the syntax and
basic concept of Aspect Oriented Programming.
The following few slides contain examples of how
these concepts can be put to use in a practical
way, which may help explain the purpose behind
Aspect Oriented Programming.

  There is not time to discuss all of the possible
examples, so only a few will be mentioned here.

Tracing / Debugging
One very practical use of AOP is in debugging

code. Using Eclipse’s built in debugging mode is
the can be a pain, having to switch between
perspectives and sift through all kinds of
information to find the single value you were
looking for. Often times it is easiest just to put a
System.out call in a method to print the value
you’d like to know. If you’re trying to trace a
problem, you may like to know what a value is
before and after a given call, so you may put in
a whole series of System.out calls. This is great,
but tracking them down to remove them when
you have solved to problem is usually painful.

Tracing / Debugging
Using AOP, you can group a whole series of

debugging calls into a single aspect, which is
easy to find after debugging has been
completed. The use of before() and after()
advice along with the ability to expose
information from a join point allows reasonably
precise debugging of what a value is over the
course of a series of calls.

Conditions
  AOP is also useful for implementing things like pre-

conditions and post-conditions. For example:

aspect PreCondition {

before(int x, int y): call(void Point.setLocation(int, int)) &&
args(x,y)) {

if (x < 0) throw new IllegalArgumentException(“Invalid x”);

if (y < 0) throw new IllegalArgumentException(“Invalid y”);

}

}

Conclusion
  In simple terms, AOP is basically a way of writing

singleton classes which have the ability to call
themselves throughout the entirety of a piece of
code. This allows them to provide the same
functionality to several unrelated locations in the
code without having to change the existing
relationships between segments of code. This
can be extremely useful.

References
  http://en.wikipedia.org/wiki/Aspect-

oriented_programming

  http://en.wikipedia.org/wiki/AspectJ

  http://en.wikipedia.org/wiki/Pointcut

  http://en.wikipedia.org/wiki/Join_point

  http://www.eclipse.org/aspectj/doc/released/
progguide/index.html

  http://eclipse.org/aspectj/

