
DESIGN PATTERNS

Presented By: Nick Butt



OPEN-CLOSED SYSTEMS

 An open-closed system is when you working code 

is open to extension and closed from modification.

 Most all design patters are used to abide to this.

 So, even though in some instances it may be 

easier to modify exiting code then use a design 

pattern you run the risk of unexpected behavior 

from you so called “working” code!! 



THE OBSERVER PATTERN

 Defines a one-to-many relationship between a set 

of objects.

 When the state of one object changes all its 

dependents are notified. 



THE OBSERVER PATTERN (CONT…)

 Lets say you have an program that gives multiple 

different representation of data.

 Instead of all representation knowing the data and 

constantly updating themselves, The data will update 

the representations whenever the data changes.

Subject: Data Observers: Representations



EXAMPLE

Level Score Ammo Count

Special Bar Health Bar



DECORATOR PATTERN

 Attaches additional responsibilities to an object 

dynamically.

 Provides a flexible alternative to subclassing for 

extending functionality.



DECORATOR PATTERN (CONT…)

 Lets say you had to design an program for the 

cash register at specialty coffee shop. You have 

multiple types of drinks each need to be uniquely 

represented in the software.

 Instead of all representing all the drinks individually 

you can represent each ingredient and use the 

decorator pattern to resolve the cost. 

Component: Espresso, Decaf, Dark Roast, etc . . .

Decorators: Steamed Milk, Cream, Mocha, Cinnamon, 

Caramel, Vanilla, Soy ,etc . . . 



EXAMPLE



LETS MAKE A DRINK



FACTORY PATTERN

 Provides an interface for creating families of 

related or dependent objects without specifying 

their concrete class.



FACTORY PATTERN (CONT…)



SINGLETON PATTERN

 Ensures a class only has one instance, and 

provide a global point of access to it.



SINGLETON PATTERN (CONT…)

 When would this be useful?

 Sound and Game Manager.

 Using singleton pattern on the soundManager and 
gameManager only one instance will exist and can 
be access from anywhere in the project.



COMMAND PATTERN

 Encapsulates a request as an object, thereby 

letting you parameterize other objects with 

different responses, queues or log requests, and 

support undoable operations. 



COMMAND PATTERN (CONT…)

Receiver : Light

Commands: LightOn, LightOff

Invoker: Remote



HOW TO UNDO?

 Controller has a setCommand() method which 

knows what command to execute. So,



ADAPTER PATTERN

 Converts the interface of a class into another 

interface the client expects. Adapter lets classes 

work together that couldn’t otherwise because of 

incompatible interfaces. 



ADAPTER PATTERN (CONT…)

Methods:

updateX(dt);

updateY(dt);

updateAngle(dt);

AttackPlayer();

getHurt(int hp);
Methods:

update(dt){

updateX(dt);

updateY(dt);

updateAngle(dt);

}

attack(){

attackPlayer()

}

updateHeath(int hp){

getHurt(int hp)

}

Methods:

update(dt);

attack();

updateHeath(int hp);



TEMPLATE METHOD PATTERN

 Defines the skeleton of an algorithm in a method, 

deferring some steps to subclasses. Template 

method allows subclasses redefine certain steps 

of an algorithm without changing the algorithm’s 

structure.



TEMPLATE METHOD PATTERN (CONT…)



ITERATOR & COMPOSITE PATTERN

 Provides a way to access the elements of an 

aggregated object sequentially without exposing 

its underlying representation.



ITERATOR & COMPOSITE PATTERN

(CONT…)

-Instead of the waitress knowing everything about the 

menu and all of the items, The waitress knows only a 

menu and an Iterator.



STATE PATTERN

 Allows an object to alter its behavior when its 

internal state changes. The object will appear to 

change its class.



STATE PATTERN (CONT…)

- Change user multiTouch input response based on the 

state of the Player. Such as if the player has the Laser 

or Rocket equipped, or if a interactive special is enabled.



PROXY PATTERN

 Provides a surrogate or placeholder for another 

object to control access to it.



PROXY PATTERN (CONT…)

Should be used if the class you are sending over the network has 

anything that is non-Serializable (ex Images)



REFERENCES

 Freeman, E., Freeman, E., Bates, B., & Sierra, K. 

(2004). Head first: design patters. O'Reilly 

Media. 

 Butt, N. R. B. (2009, October 21). Alien outpost. 

Retrieved from 

www.newislandinteractive.com/alienoutpost 



THANK YOU!! ANY QUESTIONS??

Alien Outpost Available now in the App Store.

Check under “Hot New Games”!!


