
10/28/2009

1

Extreme Programming
An Agile Process

Chad Levesque
October 27th, 2009

ENGI7893 – Software Engineering

Extreme Programming

 Definition

 Origins

 Core Values

 Best Practices

 Benefits & Limitations

What is it?
 Extreme Programming, or XP, is a methodology.

 A set of principles and practices that guide the rapid 
development of software.

 A type of Agile Development, focused on collaborative, 
iterative development.

 Named because it takes 12 well-known software “best 
practices” to their logical extremes.

Origins
 In the 1990’s, the dot-com boom and 

the increasing importance of speed-to-
market introduced a strain on the 
software industry.

 Many development teams were facing 
problems where traditional practices 
were failing while attempting to adapt 
to customers’ increasingly rapid 
requirements changing.

Origins
In 1996, Kent Beck was brought in to Chrysler to 

work on the Chrysler Comprehensive Compensation 

payroll system.

Noting problems in the development process, Beck 

took it as an opportunity to experiment with a new 

methodology. He took a set of software practices 
and implemented them at “extreme” levels.

His experience on the C3 project lead to the 

publishing of “Extreme Programming Explained” in 

1999.

The first time I was asked to lead a team, I asked them to do a little bit of the 

things I thought were sensible, like testing and reviews. The second time 

there was a lot more on the line. I thought, "Damn the torpedoes, at least this 

will make a good article," [and] asked the team to crank up all the knobs to 

10 on the things I thought were essential and leave out everything else.

– Kent Beck

Core Values
 Communication.

 Team members work face-to-face daily. Everyone on the team is involved in all 
aspects of development.

 Simplicity.
 Develop what is required and no more. Take the “You’re not gonna need it” approach.

 Feedback.
 Software is demonstrated early and often with frequent iterations (every 2 weeks.) 

The project is adapted around the feedback.

 Courage.
 Developers tell the truth about progress and estimates; they refactor often, removing 

obsolete code with no sentimental attachment.

 Respect.
 Team members respect each other as developers, and everyone works to contribute 

value. Developers respect the expertise of the customer, and management respects 
the developers’ knowledge and responsibility over their work.



10/28/2009

2

Best Practices
 Extreme Programming describes 12 best practices, grouped 

into 4 categories. These take general “good software ideas” 
and make them EXTREME!#%^!!11one

 Fine scale feedback: Pair programming, planning game, 
test-driven development, whole team.

 Continuous process: Continuous integration, refactoring, 
small releases.

 Shared understanding: Coding standards, collective code 
ownership, simple design, system metaphor.

 Programmer welfare: Sustainable pace.

Fine Scale Feedback
Pair Programming
If code reviews are good, we'll review code all

the time.
 In pair programming, all code is developed

by two programmers working in tandem at
the same machine.

 Typically, the programmer “driving” the computer
is responsible for implementation details, while the
“passenger” provides continuous code review, and focuses on how the code 
fits into the system as a whole.

 Programmers switch frequently throughout a work day, and pairs are 
rotated on a regular basis.

 Studies have shown that this method produces more defect-free code, 
better software designs, and increased morale over solitary programming. *

* Laurie Williams, University of Utah Computer Science, 2000.

Fine Scale Feedback
The Planning Game
If short iterations are good, we'll make the iterations really, really 

short.
 Iterations are very short: one or two weeks.
 Planning is done in two phases, Release and Iteration.
 Release Planning: Customers and developers work together to 

prioritize requirements for near-term releases. The customers will 
express their desires with User Stories.

 Iteration Planning: The developers translate requirements into 
task cards and assign a value to each based on risk or value. 
Programmers commit to a selection of task cards based on their 
performance in the last iteration.

Fine Scale Feedback
Test Driven Development

If testing is good, everybody will test all the time.

 Unit tests are written before production code; production 
code is only written to make failing tests pass.

 No code can be checked in while tests are failing.

Whole Team
If communication with the customer is good, have the 

customer as part of the on-site team.

 Where possible, a representative of the software’s end-user 
is frequently present for face-to-face consultations. Ideally, 
the customer is a full-time member of the team.

Continuous Process
Continuous Integration
If integration testing is important, then we'll integrate and test several 

times a day (continuous integration).
 Everyone works on the most recent version of the code. Code is 

committed to the repository every few hours.

Design Improvement
If design is good, we'll make it part of everybody's daily business.
 XP’ers are constantly refactoring their code to ensure the design stays as 

simple as possible, and code rot is avoided.

Small Releases
If frequent releases are good, we’ll release all the time.
 Extreme Programming pushes for alpha builds to be done frequently, to 

demonstrate features to the customer as they are implemented.

Shared Understanding
Coding Standards
If consistency is important, we’ll ensure that every developer follows 

the exact same coding standard.

 Developers strictly adhere a coding standard agreed upon before 
the project begins. This standard ensures consistent style and 
formatting and makes it easier for the team to share code.

Collective Code Ownership
If it’s good to disseminate knowledge and share responsibility, 

involve everyone in everything.

 Everybody is responsible for all the code. Through pair 
programming, every developer on the team gets to work on every 
aspect of the system. 



10/28/2009

3

Shared Understanding
Simple Design
If simplicity is good, we’ll keep the system as simple as possible at 

all times.

 The developers always implement the simplest design possible to 
support the current functionality, without worrying about 
anticipating change or future design problems.

System Metaphor
If architecture is important, everybody will always work at defining 

and refining the design.

 The system is described in terms of a metaphor, which helps 
guide the developers’ mental models and provides an easy-to-
understand way of communicating with the customer.

Programmer Welfare
Sustainable Pace

If overtime causes stress and reduces morale/productivity, we 
will always work at a sustainable pace.

 XP’ers are encouraged to work only 40-hours a week. 
Careful planning and honest time estimates should 
eliminate the need for overtime. 

Benefits & Limitations
Benefits

 It has been empirically demonstrated that the adaptation 
of Extreme Programming values and practices leads to an 
improvement in productivity, quality, and morale over 
traditional software development methods.

Limitations

 It has yet to proven that these methods scale appropriately 
with team size. It has only been found to work efficiently 
with teams of less than 25 or so.

References
 Kent Beck, Extreme Programming Explained: Embrace 

Change Addison-Wesley, 2000. 

 R. C. Martin, Agile Software Development, Principles, 
Patterns, and Practices. Prentice Hall, 2002.

 "Everyone's a Programmer" by Clair Tristram. Technology 
Review, Nov 2003. p. 39

 “eXtreme programming principles & practices” by Sylvia 
Ilieva, Eliza Stefanova, Sofia University 

 http://www.extremeprogramming.org (Don Wells)

 http://www.xp.co.nz/ (Ian Mitchell)


