
Software Verification

Some Established and Experimental Techniques
Presented By: Andrew Carter

Agenda

•  Introduction
•  Overview of various verification techniques

•  What, How, Why format

•  Recap
•  Review
•  Questions

Introduction

•  What is Software Verification ?
•  “Software verification is a broad and complex

discipline of software engineering whose goal is to
assure that software fully satisfies all the expected
requirements.”

•  Why am I giving this Presentation ?
•  To Provide a high level overview of a variety of

software verification techniques
•  Some of these are established practices in industry

others are experimental and under research

ESTABLISHED TECHNIQUES

Acceptance Testing

•  What ?
•  Umbrella term describing a form of testing in many

subfields of engineering
•  Treats system under test (SUT) as a black box upon

which test cases are administered
•  A particular test case will focus on one functional area

of the SUT
•  Generally no grey area when interpreting result of a

test (Boolean pass or fail)
•  Passing agreed upon tests can be a contractual

obligation enforced upon a development house by a
customer

Acceptance Testing (cont…)

•  How?
•  Massive amount of Acceptance Testing done in

Industry, thus many approaches exist
•  Some include:

•  Manual completion of test cases by QA
•  Test case automation
•  “User story” approach seen in Extreme Programming

(XP)
•  Customers work with developers to create functionality

descriptions (stories)
•  Acceptance tests distilled from stories
•  XP iteration not complete distilled tests are passed

Acceptance Testing (cont…)

•  Why?
•  Easy to ensure, to a reasonable degree, that

functional areas of a program are working
•  Does so in an organized and translucent manner

•  Drawbacks
•  Cannot uncover bugs in areas of a system which are

not covered by test cases
•  Due to relative formalities present, not the most

efficient way to rapidly discover bugs

Fuzz Testing

•  What?
•  Verification technique by which random (fuzz) input is

given to a software system
•  Not intended to validate functionality
•  Instead, intended to unearth “show stopping” bugs

•  How?
•  In a simplistic implementation just need:

•  Pseudo random number generator
•  Tool to control input of events to SUT

Fuzz Testing (cont…)

•  Why?
•  Simplistic concept and design
•  Tools required easily implementable for many

systems
•  Provides increased assurance against critical failure

when paired with more thorough verification

•  Disadvantages
•  Likely provides poor code coverage on its own

Usability Testing

•  What?
•  Observing typical users interaction with system to

come to conclusions about its usability

•  How?
•  Typical Approach:
•  Find a selection of subjects from the potential user

base of the system
•  Have them attempt predefined tasks while members

of development staff watch and take notes
•  Poll the users for their opinions such as general

satisfaction level with design and creative feedback

Usability Testing (cont…)

•  Why?
•  Many projects benefit greatly from results
•  Particularly product who’s success relies on users

enjoyment and ease of interaction (web apps, etc.)
•  If done in parallel with development, future iterations

of system can integrate test conclusions

Regression Testing

•  What?
•  Aims to uncover issues which have emerged in

previously working areas of a SUT
•  These issues have likely been caused as a side effect

of new development

•  How?
•  Create a regression test plan used to verify a system

with a certain level of code coverage (ideally 100 %)
•  This test plan can involve manual regression testing

but automation is ideal

Regression Testing (cont…)

•  Why?
•  Catch regression bugs, which can be extremely

common when new development is done on a large
system

•  Helps to validate the expected quality of a system
•  Drawbacks

•  Considerable amount of overhead
and maintenance involved in
creating and executing a
regression test plan

Exploratory Testing

•  What?
•  Defined as “simultaneous learning, test design, and

test execution”
•  Not a concrete type of testing; other testing

techniques can be classed as exploratory (as we will
see shortly)

•  Testing sessions lack specifically
defined test cases

•  Instead, tester generates test
cases on the fly while
interacting with and observing
the SUT

Exploratory Testing (cont…)

•  Why?
•  Can find obscure bugs not covered by formal test

cases
•  Little preparation time required, testers explore

system like a typical user
•  Good for testing immature systems with little

documentation/test cases

•  Disadvantages
•  Test procedures cannot be reviewed in advance
•  Hard to know what has been verified and what has

not (difficult to reproduce exact actions causing bugs)

Ad hoc Testing

•  What?
•  Form of exploratory testing
•  Freeform and unstructured

•  How?
•  Testers learn about the system in parallel with testing it
•  Create novel test cases on the fly
•  If a bug is found, it is recorded and test case integrated

into regression test suite

Ad hoc Testing (cont…)

•  Why?
•  Suggested as useful for verifying low level

functionality
•  Testing of such functionality can be overlooked by

large test cases which verify big features

•  Disadvantages
•  Like other forms of exploratory testing, hard to

guarantee level of quality
•  Therefore, best used to augment formal verification

Session-Based Testing

•  What?
•  Exploratory testing who’s effectiveness can be

tracked by meaningful metrics
•  Fairly Contemporary, Originated by Jonathan and

James Bach in 2000

•  How?
•  “Charters” created prior to a testing session
•  Charters outline goals for the session and high-level

details on what should be tested, but no detailed test
procedures

•  During a test session (typically 1-2 hours long) tester
creates test cases and executes them, recording bugs
uncovered

Session-Based Testing (cont..)

•  When tester is finished a session fills out a session
sheet, which is parsed automatically to generate
metric reports

•  Finally, test manager debriefs each session to get a
feel for test progress and facilitate future planning

•  Why?
•  Reduce the amount of time spent planning and

creating documentation, while still being able to judge
product quality

•  Disadvantages
•  Effectiveness reliant on skill and discipline of testers

and test managers

EXPERIMENTAL TECHNIQUES

Mutation Testing

•  What?
•  Unique in that it evaluates effectiveness of test suites

(test for tests!)
•  Based on idea that making small changes (mutations)

to source code will allow discovery of inadequacies in
test design

•  How?
•  Mutation operators defined by test designer (e.g.

change ‘&&’ to ‘||’)
•  Source code modified autonomously based on

mutation operators
•  Run “mutant” code against test suite. want to see

failures

Mutation Testing (cont…)

•  Example mutant code block:

Mutation Testing (cont…)

•  Why?
•  Evaluate weaknesses in test suite

•  If test passes on mutant code could indicate that test
cases are inadequate, or code is redundant and needs
refactoring

•  Disadvantages
•  When large number of mutation operators used,

computationally expensive
•  If many mutation operators used, the number of source

code permutations becomes prohibitive
•  Research has been done in an attempt to address

this issue

Model-Based Testing (MBT)

•  What?
•  Test beds derived from well defined modular sections

of a system
•  Product of R&D in the area of Model Driven

Engineering (MDE)
•  In MDE, software systems synthesized from a platform

independent model (PIM) into platform specific model
(PSM)

•  MBT uses models from MDE to derive
corresponding tests for the system
algorithmically

Model-Based Testing (cont…)
•  How?

•  Still very much a research topic
•  Several distinct methods have been utilized to derive

test cases to date
•  For instance, event-flow model can be used to create

GUI’s. In event-flow model, Each vertex of a graph
represents an event (i.e. click Ok button)

•  GUI’s can be created this way or reverse engineered
to event-flow models

•  Once event-flow model obtained, test-oracles, which
compare expected to actual output are applied to
verify GUI functionality

•  Other techniques to generate test cases from models
include: theorem proving, symbolic execution and
constraint logic programming

Model-Based Testing (MBT)

•  Why?
•  In theory, very efficient way to test.
•  Design, implementation and test case creation

roughly one manual task

•  Disadvantages
•  Immature and very much application specific
•  Requires a lot of backend R&D in MDE to go

mainstream

Recap

•  In this presentation I have provided an overview of a
variety of verification techniques. These include:
•  Acceptance Testing: this technique verifies functional

areas of a program via defined test cases.
•  Fuzz Testing: random (fuzz) data is input to a system

in an attempt to make it crash or hang.
•  Usability Testing: A process in which information

about product effectiveness is gathered by observing
user interaction.

•  Regression Testing: tests are run against an existing
code base to ensure new development has not
broken it.

Recap (cont…)

•  Exploratory Testing: test procedures are not defined,
testers develop test cases through interaction with the
system.

•  Ad hoc Testing: A form of exploratory testing that is
done without any preparation or documentation.

•  Session-based Testing: based on the exploratory
testing methodology, yet includes enough structure to
provide accountability.

•  Mutation Testing: mutant source code is generated
which an existing test case is run against.

•  Model-Based Testing: test cases are derived from the
model of a software system.

Selected References
•  [1] Wikipedia Software Testing Portal, http://en.wikipedia.org/wiki/

Portal:Software_Testing

•  [2] Wells, D. (1999). Acceptance Tests. Retrieved from Extreme
Programming: http://www.extremeprogramming.org/rules/
functionaltests.html

•  [3] Offutt, J. (1995). Practical Mutation Testing. Twelfth International
Conference on Testing Computer Software, (pp. 99-109). Washington, DC.

•  [4] Bach, J. (2003). Exploratory Testing Explained. Retrieved from Satisfice,
Inc.: http://www.satisfice.com/articles/et-article.pdf

•  [5] Johnson, B., & Agruss, C. (2000). Ad Hoc Software Testing. Retrieved
from Testing Craft: http://www.testingcraft.com/ad_hoc_testing.pdf

•  [6] Memon, A. M. (2007). An event-flow model of GUI-based applications for
testing. Software Testing, Verification and Reliability , 137-157.

Questions ?

