Software Verification

Some Established and Experimental Techniques
Presented By: Andrew Carter

NEWFOUNDLAND & LABRADOR, CANADA

WWW.MUN.CA MEMORIAL
UNIVERSITY

Agenda il

UNIVERSITY

Introduction

Overview of various verification techniques
« What, How, Why format

Recap
Review

Questions

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Introduction wil

UNIVERSITY

« What is Software Verification ?

« “Software verification is a broad and complex
discipline of software engineering whose goal is to

assure that software fully satisfies all the expected
requirements.”

Why am | giving this Presentation ?

« To Provide a high level overview of a variety of
software verification techniques

Some of these are established practices in industry
others are experimental and under research

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

1 kll I ! \IA IOI :l l.l |

UNIVERSITY

ESTABLISHED TECHNIQUES

Dedicated
TestLabs

Test
Automation

Scripts
Tools § Development/
Selection

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Acceptance Testing i

UNIVERSITY

e What ?

Umbrella term describing a form of testing in many
subfields of engineering

Treats system under test (SUT) as a black box upon
which test cases are administered

A particular test case will focus on one functional area
of the SUT

Generally no grey area when interpreting result of a
test (Boolean pass or fail)

Passing agreed upon tests can be a contractual
obligation enforced upon a development house by a
customer

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Acceptance Testing (cont...) o

UNIVERSITY

« How?
» Massive amount of Acceptance Testing done in
Industry, thus many approaches exist

e Some include:

« Manual completion of test cases by QA

» Test case automation
» “User story” approach seen in Extreme Programming
(XP)
» Customers work with developers to create functionality
descriptions (stories)
» Acceptance tests distilled from stories
« XP iteration not complete distilled tests are passed

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Acceptance Testing (cont...) o

UNIVERSITY

« Why?

« Easy to ensure, to a reasonable degree, that
functional areas of a program are working

 Does so in an organized and translucent manner

« Drawbacks

« Cannot uncover bugs in areas of a system which are
not covered by test cases

Due to relative formalities present, not the most
efficient way to rapidly discover bugs

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Fuzz Testing i

UNIVERSITY

What?

 Verification technique by which random (fuzz) input is
given to a software system

* Not intended to validate functionality
 Instead, intended to unearth “show stopping” bugs

- In a simplistic implementation just need: r ¥

* Pseudo random number generator O
» Tool to control input of events to SUT |

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Fuzz Testing (cont...) i

UNIVERSITY

« Why?
Simplistic concept and design

Tools required easily implementable for many
systems

Provides increased assurance against critical failure
when paired with more thorough verification

 Disadvantages
» Likely provides poor code coverage on its own

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Usability Testing i

UNIVERSITY

e What?

« QObserving typical users interaction with system to
come to conclusions about its usability

« How?
Typical Approach:

Find a selection of subjects from the potential user
base of the system

Have them attempt predefined tasks while members
of development staff watch and take notes

Poll the users for their opinions such as general
satisfaction level with design and creative feedback

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Usability Testing (cont...) i

« Why?
Many projects benefit greatly from results

Particularly product who's success relies on users
enjoyment and ease of interaction (web apps, etc.)

If done in parallel with development, future iterations
of system can integrate test conclusions

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Regression Testing i

UNIVERSITY

e What?

« Aims to uncover issues which have emerged in
previously working areas of a SUT

« These issues have likely been caused as a side effect
of new development

e How?

« Create a regression test plan used to verify a system
with a certain level of code coverage (ideally 100 %)

« This test plan can involve manual regression testing
but automation is ideal

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Regression Testing (cont...) o

UNIVERSITY

« Why?

« Catch regression bugs, which can be extremely
common when new development is done on a large
system

« Helps to validate the expected quality of a system
Drawbacks

« Considerable amount of overhead = “If only the kernel h:
and maintenance involved in regression testsu
creating and executing a sl
regression test plan

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Exploratory Testing i

UNIVERSITY

e What?

« Defined as “simultaneous learning, test design, and
test execution”

Not a concrete type of testing; other testing
techniques can be classed as exploratory (as we will
see shortly)

Testing sessions lack specifically A Bridge Between Paradigms
defined test cases

Less Formal

Instead, tester generates test Formal Tests Tests
cases on the fly while Regression Exploratory

System Ad hoc

interacting with and observing Acceptance .
P _ Improvisational
the SUT Configuration Alpha

Performance
Beta

Release Bug hunts

efc.

etc.

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Exploratory Testing (cont...) o

UNIVERSITY

« Why?
« Can find obscure bugs not covered by formal test
cases

 Little preparation time required, testers explore
system like a typical user

» Good for testing immature systems with little
documentation/test cases

 Disadvantages
« Test procedures cannot be reviewed in advance

* Hard to know what has been verified and what has
not (difficult to reproduce exact actions causing bugs)

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Ad hoc Testing i

UNIVERSITY

« What?
« Form of exploratory testing
* Freeform and unstructured

e How?

» Testers learn about the system in parallel with testing it
« Create novel test cases on the fly

« If a bugis found, it is recorded and test case integrated
iInto regression test suite

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Ad hoc Testing (cont...) i

UNIVERSITY

« Why?
« Suggested as useful for verifying low level
functionality

« Testing of such functionality can be overlooked by
large test cases which verify big features

 Disadvantages

« Like other forms of exploratory testing, hard to
guarantee level of quality

« Therefore, best used to augment formal verification

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Session-Based Testing i

UNIVERSITY

e What?

« Exploratory testing who's effectiveness can be
tracked by meaningful metrics

« Fairly Contemporary, Originated by Jonathan and
James Bach in 2000

e How?

« “Charters” created prior to a testing session

» Charters outline goals for the session and high-level
details on what should be tested, but no detailed test
procedures

During a test session (typically 1-2 hours long) tester
creates test cases and executes them, recording bugs
uncovered

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Session-Based Testing (cont..) "l

UNIVERSITY

« When tester is finished a session fills out a session

sheet, which is parsed automatically to generate
metric reports

 Finally, test manager debriefs each session to get a
feel for test progress and facilitate future planning

« Why?

* Reduce the amount of time spent planning and

creating documentation, while still being able to judge
product quality

 Disadvantages

« Effectiveness reliant on skill and discipline of testers
and test managers

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

1 kIA I ! l|l I.l ll I:l |

UNIVERSITY

EXPERIMENTAL TECHNIQUES

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Mutation Testing i

UNIVERSITY

e What?

« Unique in that it evaluates effectiveness of test suites
(test for tests!)

« Based on idea that making small changes (mutations)
to source code will allow discovery of inadequacies in
test design

e How?

« Mutation operators defined by test designer (e.g.
change ‘&&’to ‘||’)

« Source code modified autonomously based on
mutation operators

* Run “mutant” code against test suite. want to see
failures

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

”AI!\lA I.l ll I‘||

UNIVERSITY

Mutation Testing (cont...)

« Example mutant code block:

bool foo(&bar,

if(!bar &%
return

else
return

}

// Becomes
bool foo(&bar,

if(!'bar 11
return

else
return

NEWFOUNDLAND & LABRADOR, CANADA

something){

something)
true;

false;

something){

something)
false;

true;

WWW.MUN.CA

UNIVERSITY

Mutation Testing (cont...) i

« Why?
 Evaluate weaknesses in test suite

* |f test passes on mutant code could indicate that test
cases are inadequate, or code is redundant and needs
refactoring

 Disadvantages
* When large number of mutation operators used,
computationally expensive

* If many mutation operators used, the number of source
code permutations becomes prohibitive

 Research has been done in an attempt to address
this issue

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Model-Based Testing (MBT) o

UNIVERSITY

e What?
 Test beds derived from well defined modular sections
of a system

Product of R&D in the area of Model Driven
Engineering (MDE)
 In MDE, software systems synthesized from a platform

independent model (PIM) into platform specific model
(PSM) Is a partial desanption of

MBT uses models from MDE to derive
corresponding tests for the system System

algorithmically | i

can be run
against

Executable
Abstract tests m

L4

are abstract versions of

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Model-Based Testing (cont...) "W

UNIVERSITY
« How?
Still very much a research topic

Several distinct methods have been utilized to derive
test cases to date

For instance, event-flow model can be used to create
GUTI’s. In event-flow model, Each vertex of a graph
represents an event (i.e. click Ok button)

GUI’'s can be created this way or reverse engineered
to event-flow models

Once event-flow model obtained, test-oracles, which
compare expected to actual output are applied to
verify GUI functionality

Other techniques to generate test cases from models
iInclude: theorem proving, symbolic execution and
constraint logic programming

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Model-Based Testing (MBT) o

UNIVERSITY

« Why?
 In theory, very efficient way to test.

* Design, implementation and test case creation
roughly one manual task

* Disadvantages

« Immature and very much application specific

« Requires a lot of backend R&D in MDE to go
mainstream

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Recap il

UNIVERSITY

In this presentation | have provided an overview of a
variety of verification techniques. These include:

Acceptance Testing: this technique verifies functional
areas of a program via defined test cases.

Fuzz Testing: random (fuzz) data is input to a system
In an attempt to make it crash or hang.

Usability Testing: A process in which information
about product effectiveness is gathered by observing
user interaction.

Regression Testing: tests are run against an existing
code base to ensure new development has not
broken it.

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Recap (cont...) i

UNIVERSITY

Exploratory Testing: test procedures are not defined,
testers develop test cases through interaction with the
system.

Ad hoc Testing: A form of exploratory testing that is
done without any preparation or documentation.

Session-based Testing: based on the exploratory

testing methodology, yet includes enough structure to
provide accountability.

Mutation Testing: mutant source code is generated
which an existing test case is run against.

Model-Based Testing: test cases are derived from the
model of a software system.

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Selected References wil

UNIVERSITY

[1] Wikipedia Software Testing Portal,

[2] Wells, D. (1999). Acceptance Tests. Retrieved from Extreme
Programming:

[3] Offutt, J. (1995). Practical Mutation Testing. Twelfth International
Conference on Testing Computer Software, (pp. 99-109). Washington, DC.

[4] Bach, J. (2003). Exploratory Testing Explained. Retrieved from Satisfice,
Inc.:

[5] Johnson, B., & Agruss, C. (2000). Ad Hoc Software Testing. Retrieved
from Testing Craft:

[6] Memon, A. M. (2007). An event-flow model of GUIl-based applications for
testing. Software Testing, Verification and Reliability , 137-157.

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

Questions ? wil

UNIVERSITY

NEWFOUNDLAND & LABRADOR, CANADA WWW.MUN.CA

