
Presented By
Andrew Butt

Overview

� A Brief History of Functional Programming

� Comparison Between OOP and Functional
programmingprogramming

� Paradigms and Concepts

� Functional Programming in Other
Languages

An Overview of Functional ProgrammingAn Overview of Functional Programming

What is Functional Programming?

� Programming Paradigm with roots in Lambda
Calculus and Combinatory logic

� Lambda calculus provides a formal system for
definition, function application and recursiondefinition, function application and recursion

� Treats computation as evaluation of
mathematical functions without states

� Realizes a computation by composing
functions

History

� On of the first languages LISP was developed
in 1950s at MIT for IBM scientific computers

� Languages developed throughout 60s and 70s

� Haskell was released in 1980s in an attempt to
unify many functional languages

� Referred to as the “Algebra of Programming”

An Overview of Functional ProgrammingAn Overview of Functional Programming

Object Oriented Programming

� OOP has Objects
� Objects hide data, encapsulate
� Objects perform a set of related

operations through methodsoperations through methods
� Objects are capable of storing data on

the current state of itself or other objects
� Objects are highly reusable

Functional Programming

� Takes a set of instructions to perform a
task

� Selectively executing instructions can
perform a task

� Pure Functions contain no mutable data
� Pure Functions are calculated solely on

the data passed into them
� Calling foo(a,b) will always produce the

same result

Definition of Function

� Functional Languages use “Function” in
the mathematical use of the word

� Map input values to the output values

� Imperative “Functions” can be
considered subroutines which
subroutines with states and mutable
data

Pure Functions

� Have no memory
� Will always result in the same answer

when called with equivalent parameters
� If all calls are Pure functions then very � If all calls are Pure functions then very

efficient optimization is capable through
the complier, as functions can be
reordered or combined as needed.

Higher-order functions

� Can only take other functions as
arguments

� Can return functions
� Analogous to returning d/dx when � Analogous to returning d/dx when

returning a derivative function
� Can enable currying: a function takes

multiple arguments in such a way that it
can be called as a chain of functions
each with a single argument

Currying Example

� Using F(x,y) = x2 / y3

� Evaluate F(5,5)
� Replacing x with 5 results in a new

function in y: g(y) = 52 / y3function in y: g(y) = 5 / y
� Replacing y with 5 results in:

g(3) = 25 / 53

� g(3) = 1/5
� Each step results in a more simplified

expression

Functions

� Functions don’t “DO” anything!

� That is they only return a value, no “side
effects” will occur after the execution of effects” will occur after the execution of
a function

� For example no files can be written
using pure functions and no variables
will be changed in memory

A Little White Lie

� No file or I/O would do little more
than warm up your computer

� Functional languages can actually
write data and I/O using Non-Pure
functionsfunctions

� Purely functional languages only
allow this inside language
constructs

� Greatly limits “side-effects”

Faking States

� Many programs are closely tied to idea
of states

� Functional languages can use monads � Functional languages can use monads
to use I/O and mutable data

� Abstract this functionality away to
maintain pureness

Functional Programming

� No loops! NONE! Nadda! Zip! Zilch!
� Loops are replaced with recursion

Efficiency

� Slower in many cases than imperative
languages

� Very efficient at large matrix calculations� Very efficient at large matrix calculations

� Optimized for array functional languages

An Overview of Functional ProgrammingAn Overview of Functional Programming

Strict Evaluation

� In strict evaluation any function which
contains a failing term will also fail

� Eg: print length([5+2], 3*3, 6/0]) will fail
due to divide by zero error

Non-Strict (lazy) Evaluation

� Length will return 3, as its terms are not
evaluated

� Lazy evaluation does not fully evaluate the
expression before invoking a function.

Coding Techniques

� Steps are usually combined to
emphasize composition and
arrangement of functions, often without
explicit steps defined.explicit steps defined.

Imperitive style:
target = List[];
for (item : source){

x = G(item)
Y = F(trans1)
target.append(trans2)

}

Functional Style:
compose2 = lambda A, B: lambda x: A(B(x))
target = map(compose2(F, G), source)

Recursion

� Widely used in functional languages
� Largely replaces iteration, as functions

invoke themselves
� Most functional languages allow � Most functional languages allow

unrestricted recursion and are Turing
Complete

� Halting Problem is undecidable in many
Functional Languages

Problems with Functional

Programming

� As systems grow they become a large
collection of functions

� All of these functions are interconnected� All of these functions are interconnected

� Changing one function breaks all others
relying on it

� Very hard to manage on large scales

An Example: Functional Factorial

Haskell:
factorial :: Integer -> Integer
factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)

� Line 1: defines the factorial function to
take an integer and return an integer

� Line 2: Return 1 if input is 0
� Line 3: if n > 0 call factorial on itself

An Example: Functional Factorial

Common Lisp:

(defun factorial (n)
(if (<= n 1)

1
(* n (factorial (- n 1)))))

An Overview of Functional ProgrammingAn Overview of Functional Programming

Functional Programming in C

� Function pointers can be used in similar
fashion as “higher-order” functions

� In C# lambda functions can used to
program in a functional styleprogram in a functional style

� Lazy evaluation can be used for lists in C

� Closures are possible in C through the use
of pointers

Functional Programming in Java

Runnable foo= new Runnable() {
public void run() {

bar();

}

};

� Bar is enclosed within the Runnable foo,
and can be passed between methods as
if it were data and executed at anytime
by foo.run()

Why Use Functional

Programming?
� Advantages in Parallel and concurrent

programming by eliminating race
conditions and locking of mutable data

� Very common in research and academia
(Mathematica is a functional language)(Mathematica is a functional language)

� Testing can be easier as every function can
be seen as independent

Why You May Not Want To Use

Functional Programming!

� It requires a lot of overhead learning
(and unlearning!)

� Most computer hardware implement � Most computer hardware implement
optimization for imperative techniques

� Many problems are simply better suited
for OOP or similar techniques

References
or…

How I learned to Stop Asking Questions and RTM

� Konrad Hinsen, "The Promises of Functional
Programming," Computing in Science and
Engineering, vol. 11, no. 4, pp. 86-90, Engineering, vol. 11, no. 4, pp. 86-90,
July/Aug. 2009, doi:10.1109/MCSE.2009.129

� Turner, D.A, “Total Functional
Programming,” Journal of Universal
Computer Science, vol. 10, no. 7, Jun 04

� Hughes, John, “Why Functional
Programming Matters”, 1984

Thank You!

