AN OVERVIEW OF
FUNCTIONAL

PROGRAMMING

Presented By
Andrew Butt

Overview

A Brief History of Functional Programming

Comparison Between OOP and Functional
programming

Paradigms and Concepts

Functional Programming in Other
Languages

An Overview of Functional Programming

A Brief History of Functional
Languages

What is Functional Programming?

Programming Paradigm with roots in Lambda
Calculus and Combinatory logic

Lambda calculus provides a formal system for
definition, function application and recursion

Treats computation as evaluation of
mathematical functions without states

Realizes a computation by composing
functions

History

On of the first languages LISP was developed
In 1950s at MIT for IBM scientific computers

Languages developed throughout 60s and 70s

Haskell was released in 1980s in an attempt to
unify many functional languages

Referred to as the “Algebra of Programming”

An Overview of Functional Programming

Comparison Between Object
Oriented Programming and
Functional programming

Object Oriented Programming

OOP has Objects
Objects hide data, encapsulate

Objects perform a set of related
operations through methods

Objects are capable of storing data on
the current state of itself or other objects

Objects are highly reusable

Functional Programming

Takes a set of instructions to perform a
task

Selectively executing instructions can
perform a task

Pure Functions contain no mutable data

Pure Functions are calculated solely on
the data passed into them

Calling foo(a,b) will always produce the
same result

Definition of Function

Functional Languages use “Function” in
the mathematical use of the word

Map input values to the output values

Imperative “Functions” can be
considered subroutines which
subroutines with states and mutable

data

Pure Functions

Have no memory
Will always result in the same answer
when called with equivalent parameters

If all calls are Pure functions then very

efficient optimization is capable through
the complier, as functions can be
reordered or combined as needed.

Higher-order functions

Can only take other functions as
arguments

Can return functions

Analogous to returning d/dx when
returning a derivative function

Can enable currying: a function takes
multiple arguments in such a way that it
can be called as a chain of functions
each with a single argument

Currying Example

Using F(x,y) = x2/ y3

Evaluate F(5,5)

Replacing x with 5 results in a new
function in y: g(y) = 52/ y3

Replacing y with 5 results In:

g(3) =25/53

g(3) =1/5

Each step results in a more simplified
expression

Functions

Functions don’t “DO” anything!

That Is they only return a value, no “side
effects” will occur after the execution of
a function

For example no files can be written
using pure functions and no variables
will be changed in memory

A Little White Lie

No file or I/O would do little more
than warm up your computer

Functional languages can actually
write data and 1/O using Non-Pure
functions

Purely functional languages only
allow this inside language
constructs

Greatly limits “side-effects”

Faking States

Many programs are closely tied to idea
of states

Functional languages can use monads
to use I/O and mutable data

Abstract this functionality away to
maintain pureness

unctional Programming

No loops! NONE! Nadda! Zip! Zilch!
Loops are replaced with recursion

Efficiency

Slower in many cases than imperative
languages

Very efficient at large matrix calculations

Optimized for array functional languages

An Overview of Functional Programming

Paradigms and Concepts

Strict Evaluation

In strict evaluation any function which
contains a failing term will also falil

Eg: print length([5+2], 3*3, 6/0]) will fall
due to divide by zero error

Non-Strict (lazy) Evaluation

Length will return 3, as its terms are not
evaluated

Lazy evaluation does not fully evaluate the
expression before invoking-afunction.

Coding Techniques

Steps are usually combined to
emphasize composition and
arrangement of functions, often without
explicit steps defined.

Imperitive style:
target = List][];
for (item : source){
X = G(item)
Y = F(transl)
target.append(trans?2)

Functional Style:
compose?2 = lambda A, B: lambda x: A(B(x))
target = map(compose2(F, G), source)

Recursion

Widely used in functional languages

Largely replaces iteration, as functions
Invoke themselves

Most functional languages allow

unrestricted recursion and are Turing
Complete

Halting Problem is undecidable in many
Functional Languages

Problems with Functional
Programming

As systems grow they become a large
collection of functions

All of these functions are interconnected

Changing one function breaks all others
relying on it

Very hard to manage on large scales

An Example: Functional Factorial

Haskell:
factorial :: Integer -> Integer

factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)

Line 1: defines the factorial function to
take an integer and return an integer

Line 2: Return 1 if input is O
Line 3: if n > O call factorial on itself

An Example: Functional Factorial

Common Lisp:

(defun factorial (n)
(if (<=n1)
1
(* n (factorial (- n 1)))))

LISP 15 OVER HALF A | | T WONDER IF THECYCLES

CENTURY OLD AND 1T WILL CONTINUE FOREVER.
STILL HAS THIS PERFECT, ~¥—’——x/—’/
TIMELESS MRHM{EL

A FEW CODERS FROMEACH

NEW GENERATION RE-
DISCOVERING THE LISP ARTS. FOR A MORE ... CIVIUZED AGE.

An Overview of Functional Programming

Functional Programming in
Other Languages

Functional Programming in C

Function pointers can be used in similar
fashion as “higher-order” functions

In C# lambda functions can used to
program in a functional style

Lazy evaluation can be used for lists in C

Closures are possible in C through the use
of pointers

Functional Programming in Java

Runnable foo= new Runnable() {
public void run() {

bar();

Bar is enclosed within the Runnable foo,
and can be passed between methods as
If It were data and executed at anytime
by foo.run()

Why Use Functional
Programming?

Advantages in Parallel and concurrent
programming by eliminating race
conditions and locking of mutable data

Very common in research and academia

(Mathematica is a functional language)

Testing can be easier as every function can
be seen as independent

Why You May Not Want To Use
Functional Programming!

It requires a lot of overhead learning
(and unlearning!)

Most computer hardware implement
optimization for imperative technigues

Many problems are simply better suited
for OOP or similar techniques

References

or...
How | learned to Stop Asking Questions and RTM

Konrad Hinsen, "The Promises of Functional
Programming," Computing in Science and

Engineering, vol. 11, no. 4, pp. 86-90,
July/Aug. 2009, doi:10.1109/MCSE.2009.129

Turner, D.A, “Total Functional
Programming,” Journal of Universal
Computer Science, vol. 10, no. 7, Jun 04

Hughes, John, “Why Functional
Programming Matters”, 1984

Thank You!

AT ONCE, JUSTLIKE THEY SAID, TFELT A | TRULY, THIS WS
(GREAT ENUGHTENMENT, I SAW THE NAKED THE LANGUMGE

OF tar's —

= ra

THE PATTERNS AND METAPRTTERNS DANCED. T MEAN, OSTENSIRLY, YES.

r:-uENL‘f, I WAS BATHED |f W SyNTAx FADED, AND I SWAM INTHE PURITY OF HONESTLY, WE HACKED MasT
IN A SUFFUSION OF BLUE. |{ [{QUANTIFIED CONCEPTION. OF IDEAS MANIFEST. - OF IT TOGETHER WITH PERL.

