
Engineering 7893
Software Engineering

Software Process

Dennis Peters

Fall 2009



Software Engineering?



Engineering Process

We need to understand the steps that take us from an idea to a
product.

• What do we do?

• In what order do we do it?

• How do we know when we’re finished each step?



Production process

Typical steps in production process for any engineering project:

1 Requirements analysis — what problem are we to solve?

2 Design — how will we solve the problem?

3 Analysis — will our proposed solution solve the problem?

4 Implementation/construction — build the solution.

5 Validation — did we solve the problem (and will the customer
buy it)?

6 Production — make copies of the product.

7 (Maintenance — make sure the solution keeps running.)



Is Software Different?

• Requirements are less stable.

• Nature (physics) plays a smaller role.
• Doesn’t (necessarily) fail in predictable ways.
• Interpolation and extrapolation are rarely valid.

• No obvious natural decomposition.

• Complexity can be very high.

• Production (not implementation) is trivial.



“Traditional” Software Process

1 Requirements — describe “what” not “how”

Analysis/elicitation What does the client really want?
Specification Precisely describe the behaviour of the system.

2 Design

Architectural design — what classes/components/modules
will make up the system?

• What role does each play?
• What are its relationships (interactions, sub-classing,

associations) with other modules?
• What is its interface (including behaviour)? Abstract:

independent of the implementation.
• How can it be tested?

Module design — how will each module be implemented.

3 Implementation — write the code.



Traditional Software Process (cont’d)

4 Verification
• Unit test — behaviour of each module.
• Integration test — interaction between modules.
• System test — behaviour of the whole system.

5 Maintenance — modify the system.

• Each phase results in a product (document, code), which is
the input to the next phase.

• If a phase is carried out rigorously, its product can be verified
against the products of the previous phase(s) (analysis).

• Validation (Is this what the customer wants?) can be carried
out early and after each phase.



When does the “Traditional” Process work well?

• Large teams — Components can be reasonably worked on in
parallel.

• Few unknowns
• Requirements are stable.
• Technology is well known.
• The team has solved similar problems before.

• Implementation and design are clearly distinct tasks.

• Implementation is a significant portion of development.

• Components can be effectively tested independently.



Incremental/Unified/Spiral Software Development

• Software system is developed through a sequence of short,
fixed length (e.g., four week) increments.

• Each includes requirements analysis, design, implementation,
testing

• The endpoint of each increment is a functioning system.
• You can objectively determine if you’ve met the goals of the

increment by the behaviour of the system.
• Usually all behaviour of previous increments is also exhibited in

later increments — there is progress towards the final goal.

• Documents are updated as part of each increment so they
remain accurate. (live documents)

• Having an executable system makes it possible to get early
and frequent feedback (validation).

• Feedback allows the design to be adapted as requirements are
better understood or change.



How to plan for and execute incremental development

• Identify a set of distinct system behaviours (use cases).

• Assign each system behaviour to a particular increment.

• Candidates for early increments:
• Highest priority (from the customer’s point of view).
• Highest risk (i.e., least well understood).

• Focus on what is needed for the current increment only (if it’s
not needed in this increment, then don’t do it).

• Constantly track progress
• If it looks like you won’t meet a target date, drop behaviour

rather than move the date.



When and Why to use Incremental Development

• Requirements are not well understood.
• Developers get a better understanding by solving parts of the

problem.
• Users can give feedback on early increments.

• Technological uncertainty.
• Early increments used to test if/how well technology is working

to solve the problem.

• Schedule uncertainty.
• Lack of experience makes it difficult to know how long it will

take to do some parts.
• Constant reflection makes adjusting the schedule easy.



When and Why (cont’d)

• Design/interface uncertainty.
• Constant integration ensures that interfaces are understood.

• Important to deliver something quickly.
• Time to market can be critical in some industries.
• Gives management/customers confidence that progress is

happening.

• Small team.
• Parallel development of components isn’t feasible.
• Directs energy, avoids “thrashing.”



Common mistakes

• An actual progress report from a previous student:

“Increment 1 is 80% complete, increment 2 is 50%
complete and increment 3 is 20% complete.”

• This student clearly missed the point.
• Each increment should be finished before the next is started.

• Failure to refactor.
• At each increment consider the design and how it can evolve

into the next increment.
• If it isn’t right for the next increment fix it now before it

becomes an albatross around your neck.



Mistakes (cont’d)

• Focusing on components rather than behaviour.
• Increments are defined by the behaviour they deliver, not the

development that goes into them.
• Keep your eyes on the bottom line (behaviour), not the

components.

• Over design.
• There is a strong tendency to want to make an “elegant

design” (e.g., more flexible, configurable . . . ).
• The best designs are the simple designs (KISS = Keep It

Simple, Stupid).

• Failure to make a plan and communicate it.
• Write down what behaviour is in each increment.
• Make sure everybody has the plan.
• Keep the plan current.



Software Qualities: Exernal

Qualities: What makes good software?
External qualities: What the user cares about.

• Usefulness — does it do what the user wants?

• Performance — speed, size.

• Correctness — does it meet its specification? (assumes
precise specification)

• Reliability — does it do what the user wants most of the time?

• Robustness — does it respond well to error/failures of other
systems?

• Usability — is it easy to use?

• Interoperability — does is conform to relevant
standards/formats etc.?

• User documentation.



Software Qualities: Internal

What future developers will care about. Attributes of source code
and documentation.

• Correctness — internal documentation consistent with itself
and the code.

• Changeability — Can the most likely changes be made easily?
Can other changes be made reasonably?

• Understandability — Is code & documentation
understandable?

• Reusability — Can components be reused in other projects?



Software Qualities: Process

What managers care about.

• Cost — production and maintenance.

• Timeliness — When will it be ready?

• Traceability — Can the progress of the production be
monitored?



Principles to achieve quality

Rigour/Formality
• Precision and exactness in descriptions and processes.
• Software is only correct when it is clear what it means to be

correct.
• Should not inhibit creative process—sketch then design.
• Formal means that content and meaning (syntax and

semantics) are governed by mathematical laws.

Separation of Concerns
• Time: concentrate on different aspects of system at different

times.
• Qualities: e.g., verify correctness without considering

efficiency.
• Views: Choose appropriate technique for examining different

aspects of system (e.g., class diagram vs. interaction
diagram).

• Components: modularity.



Quality Principles (cont’d)

Modularity (a.k.a., classes)

• Simplify a difficult task by breaking it into smaller
components.

• Correct parts imply a correct whole.
• Keep each part simple.
• High cohesion — all elements of the same module are

strongly related.
• Low coupling — elements in a module do not depend heavily

on elements in other modules (except what is in the
interface).

Abstraction

• Hide details to enable understanding (separation of concerns)
• The interface of a component is more simple than its

implementation.



Quality Principles (cont’d)

Anticipation of change

• Change is inevitable and often predictable.
• Encapsulate anticipated changes in modules (classes).
• Unanticipated changes ruin modularity.
• Unanticipated changes will be much harder to get right.

Incrementality

• Identify useful subsets of system.
• Get something running early and keep it running.


