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Verification

Any activity that is undertaken to determine if the system meets
its objectives or not.

• Every product should be verified (e.g., code, design
documentation, user documentation).

• Every quality should be verified (e.g., behaviour, modifiability,
robustness, usability).

• Some qualities or products will not yield yes/no verification
results

• Impossible/difficult to measure (e.g., correctness)
• Subjective (e.g., modifiability)

• Implicit qualities should be verified.
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Approaches to verification

1 Testing

2 Static Analysis
• Peer review
• Insepction/Walk-through/Structured review
• Formal verification

3 Symbolic execution — algebraic analysis of program

4 Model checking — analysis of finite state model of system
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Testing

Execute the system and observe the behaviour to determine if it is
acceptable.

“Testing can be a very effective way to show the presence
of bugs, but it is hopelessly inadequate for showing their
absence.” (E. W. Dijkstra)

The goal of testing is to find bugs.

1 What test cases (input values) will be used?

2 How many test will be run?

3 How will we do the testing (testing structure)?

4 How do we know if the behaviour is correct?
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Test case selection 1: Black-Box Testing

• Based on externally observable behaviour of a component.

• No reference to implementation.

• Normally divide input domain (possible inputs) into
equivalence classes — sets of inputs for which the future
behaviour is the same.

• Choose some test cases from each (or as many as possible) of
the equivalence classes.

• Try to choose some where errors are likely (e.g., boundaries of
the equivalence classes).

• Assumes that the implementation chooses the same classes.

• Number of classes may be very large.
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Test case selection 2: Clear-Box Testing

• Based on examination of code.

• Choose test cases so that all parts of the code are tested.
• Lines
• Conditions
• Paths

• Danger of the tester missing the same cases as the
implementer.

• Line coverage is very hard.

• Path coverage is practically impossible.
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Test case selection 3: Random Testing

• Randomly choose test cases according to some probability
density function (usage profile).

• Typically requires more test cases to find faults.

• May find cases that were overlooked.

• Can be used to estimate reliability (likelihood of fault
occurring in practice).

• Validity of reliability is very dependent on the validity of the
usage profile.
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How many Tests?

• Exhaustive testing — Try every possible input.

• Until you’re confident that all bugs have been found.

• Until you stop finding bugs.
• Track rate of fault detection (faults / hour of testing).
• Set a threshold for acceptable rate.

• As many as you have time for.
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How good is Random Testing?

Consider this simple (wrong) program to compare equal length
strings:

bool stringcmp(string s1, string s2)
{
bool eq = true;
unsigned i = 0;
while (i < s1.length()) {
eq = (s1[i] == s2[i]);
i++;

}
return(eq);

}

What’s the probability of finding this error by testing?
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Probability of finding bug

= Pr(two unequal test strings have the same last character)
= 1 - Pr(strings differ in their last character)n

where n is the number of test cases.
Assume random strings from an alphabet of 100 characters.
= 1− 99

100

n

n Pr(detecting error)

1 0.010

5 0.049

10 0.096
So how many test cases to be 99% sure of detecting the error?
0.99 ≥ 1− 99

100

n

0.99n ≤ 0.01⇒ n ≥ 459
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Testing Structure 1: Unit Testing

• Test each ‘unit’ (class/module/package) independently.

• If the parts all work then the whole should work.

Bottom-up Test the units at the bottom of the uses hierarchy
first.

• Requires driver functions to call the units.
• Tested units can be used when testing higher

level units.

Top-down Test the units at the top of the uses hierarchy first.

• Requires stub functions.
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Testing Structure 2: Integration Testing

• Test the interaction between components.

• May require driver or stubs on either side.

• Will help find places were developers didn’t have the same
understanding of the design. (Fix the documents, they’re
probably ambiguous.)
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Testing Structure 3: System Testing

• Test overall system behaviour.

• Very hard to isolate bugs.

• Can only be done late in the process, so cost of fixes is high.

• Typically used for acceptance testing (customer, regulatory
body).
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Checking Correct Behaviour: Oracles

An oracle is a means of determining if the observed behaviour is
correct or not.

• Most common form: human observation.
• Time consuming
• Expensive
• Error prone

• Automated oracles — use a program to check.
• Fast, cheap, accurate.
• Must be coded somehow (can be generated from spec. if spec.

is written formally).
• Could itself have errors.

• Partial oracles — don’t check all required properties.
• Check those that are easiest to check.
• Check those that are likely to be source of faults.
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Test Driven Development

Three principles:

1 Don’t write any production code until you have written a
failing test case.

2 Don’t write more of a unit test than is sufficient to fail or fail
to compile.

3 Don’t write more production code than is sufficient to pass
the failing test.

• Leads to very short cycles between writing tests and
production code.

• Every method has tests that verify its operation.

• Forces us to view code under development from point of view
of caller—helps us to get the interface right.

• Tests are valuable documentation.
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Decoupling Design

• In order to test parts we need to have parts that it uses.

• Mock objects or stub methods are needed.

• Implementation is cleaner if (Java) interfaces are defined so
that mock and real objects can be interchanged.

• TDD results in better decoupling in design.
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Mock Objects
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Acceptance Tests

• Intended to verify that the system works as a whole.

• Should be written by client in a notation that he/she can
understand (i.e., not code).

• Become true documentation of feature requirements — the
requirements specification for each feature.

• Should be automated.

• Developing acceptance tests early will influence architecture
— decoupling to facilitate the testing.
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Testing with JUnit

Running a test case:

1 Get the component to a known state (set up).

2 Cause some event (the test case).

3 Check the behaviour.
• Record pass/fail
• Track statistics

• Typically we want to do a lot of test cases so it makes sense
to automate.

• Test cases are mostly similar in structure, so we can generalize
them.
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JUnit

• JUnit is a framework for writing repeatable tests.

• classes for structuring test cases.

• runners to run test cases and collect statistics.
• junit.textui.TestRunner – Text based
• junit.swingui.TestRunner – Swing based
• junit.awtui.TestRunner – AWT based

• Normally used by extending TestCase with specifics for
testing a particular class/system/component.
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Test Fixture

• Usually some set of test cases operate on a similar set of
objects — the test fixture.

• Fixture is implemented by member variables of extension
(subclass) of junit.framework.TestCase.

• Override two methods:
• protected void setUp() — initialize fixture prior to each

test case.
• protected void tearDown() — clean up fixture after each

test case.
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Test Cases

• By default, methods named testSomething are test cases.

• Write one method test. . . for each test case.

• Use assertXXX from junit.framework.Assert (a parent
of TestCase) to evaluate results.

• assertEquals
• assertTrue
• assertFalse
• assertSame
• assertNotSame
• fail — for when you know a test has failed.
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Test Suite

• To run a group of tests together, create a test suite.

• Simplest to simply implement:

public static Test suite() {
return new TestSuite(YourTestClass.class);

}

• Will form test suite containing all methods that start with
“test”.

• Can also use no-argument constructor and explicitly add tests
with addTest.
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Design of JUnit
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