
Verification Testing Test Driven Development Testing with JUnit

Verification

Any activity that is undertaken to determine if the system meets
its objectives or not.

• Every product should be verified (e.g., code, design
documentation, user documentation).

• Every quality should be verified (e.g., behaviour, modifiability,
robustness, usability).

• Some qualities or products will not yield yes/no verification
results

• Impossible/difficult to measure (e.g., correctness)
• Subjective (e.g., modifiability)

• Implicit qualities should be verified.



Verification Testing Test Driven Development Testing with JUnit

Approaches to verification

1 Testing

2 Static Analysis
• Peer review
• Insepction/Walk-through/Structured review
• Formal verification

3 Symbolic execution — algebraic analysis of program

4 Model checking — analysis of finite state model of system



Verification Testing Test Driven Development Testing with JUnit

Testing

Execute the system and observe the behaviour to determine if it is
acceptable.

“Testing can be a very effective way to show the presence
of bugs, but it is hopelessly inadequate for showing their
absence.” (E. W. Dijkstra)

The goal of testing is to find bugs.

1 What test cases (input values) will be used?

2 How many test will be run?

3 How will we do the testing (testing structure)?

4 How do we know if the behaviour is correct?



Verification Testing Test Driven Development Testing with JUnit

Test case selection 1: Black-Box Testing

• Based on externally observable behaviour of a component.

• No reference to implementation.

• Normally divide input domain (possible inputs) into
equivalence classes — sets of inputs for which the future
behaviour is the same.

• Choose some test cases from each (or as many as possible) of
the equivalence classes.

• Try to choose some where errors are likely (e.g., boundaries of
the equivalence classes).

• Assumes that the implementation chooses the same classes.

• Number of classes may be very large.



Verification Testing Test Driven Development Testing with JUnit

Test case selection 2: Clear-Box Testing

• Based on examination of code.

• Choose test cases so that all parts of the code are tested.
• Lines
• Conditions
• Paths

• Danger of the tester missing the same cases as the
implementer.

• Line coverage is very hard.

• Path coverage is practically impossible.



Verification Testing Test Driven Development Testing with JUnit

Test case selection 3: Random Testing

• Randomly choose test cases according to some probability
density function (usage profile).

• Typically requires more test cases to find faults.

• May find cases that were overlooked.

• Can be used to estimate reliability (likelihood of fault
occurring in practice).

• Validity of reliability is very dependent on the validity of the
usage profile.



Verification Testing Test Driven Development Testing with JUnit

How many Tests?

• Exhaustive testing — Try every possible input.

• Until you’re confident that all bugs have been found.

• Until you stop finding bugs.
• Track rate of fault detection (faults / hour of testing).
• Set a threshold for acceptable rate.

• As many as you have time for.



Verification Testing Test Driven Development Testing with JUnit

How good is Random Testing?

Consider this simple (wrong) program to compare equal length
strings:

bool stringcmp(string s1, string s2)
{
bool eq = true;
unsigned i = 0;
while (i < s1.length()) {
eq = (s1[i] == s2[i]);
i++;

}
return(eq);

}

What’s the probability of finding this error by testing?



Verification Testing Test Driven Development Testing with JUnit

Probability of finding bug

= Pr(two unequal test strings have the same last character)
= 1 - Pr(strings differ in their last character)n

where n is the number of test cases.
Assume random strings from an alphabet of 100 characters.
= 1− 99

100

n

n Pr(detecting error)

1 0.010

5 0.049

10 0.096
So how many test cases to be 99% sure of detecting the error?
0.99 ≥ 1− 99

100

n

0.99n ≤ 0.01⇒ n ≥ 459



Verification Testing Test Driven Development Testing with JUnit

Testing Structure 1: Unit Testing

• Test each ‘unit’ (class/module/package) independently.

• If the parts all work then the whole should work.

Bottom-up Test the units at the bottom of the uses hierarchy
first.

• Requires driver functions to call the units.
• Tested units can be used when testing higher

level units.

Top-down Test the units at the top of the uses hierarchy first.

• Requires stub functions.



Verification Testing Test Driven Development Testing with JUnit

Testing Structure 2: Integration Testing

• Test the interaction between components.

• May require driver or stubs on either side.

• Will help find places were developers didn’t have the same
understanding of the design. (Fix the documents, they’re
probably ambiguous.)



Verification Testing Test Driven Development Testing with JUnit

Testing Structure 3: System Testing

• Test overall system behaviour.

• Very hard to isolate bugs.

• Can only be done late in the process, so cost of fixes is high.

• Typically used for acceptance testing (customer, regulatory
body).



Verification Testing Test Driven Development Testing with JUnit

Checking Correct Behaviour: Oracles

An oracle is a means of determining if the observed behaviour is
correct or not.

• Most common form: human observation.
• Time consuming
• Expensive
• Error prone

• Automated oracles — use a program to check.
• Fast, cheap, accurate.
• Must be coded somehow (can be generated from spec. if spec.

is written formally).
• Could itself have errors.

• Partial oracles — don’t check all required properties.
• Check those that are easiest to check.
• Check those that are likely to be source of faults.



Verification Testing Test Driven Development Testing with JUnit

Test Driven Development

Three principles:

1 Don’t write any production code until you have written a
failing test case.

2 Don’t write more of a unit test than is sufficient to fail or fail
to compile.

3 Don’t write more production code than is sufficient to pass
the failing test.

• Leads to very short cycles between writing tests and
production code.

• Every method has tests that verify its operation.

• Forces us to view code under development from point of view
of caller—helps us to get the interface right.

• Tests are valuable documentation.



Verification Testing Test Driven Development Testing with JUnit

Decoupling Design

• In order to test parts we need to have parts that it uses.

• Mock objects or stub methods are needed.

• Implementation is cleaner if (Java) interfaces are defined so
that mock and real objects can be interchanged.

• TDD results in better decoupling in design.



Verification Testing Test Driven Development Testing with JUnit

Mock Objects



Verification Testing Test Driven Development Testing with JUnit

Acceptance Tests

• Intended to verify that the system works as a whole.

• Should be written by client in a notation that he/she can
understand (i.e., not code).

• Become true documentation of feature requirements — the
requirements specification for each feature.

• Should be automated.

• Developing acceptance tests early will influence architecture
— decoupling to facilitate the testing.



Verification Testing Test Driven Development Testing with JUnit

Testing with JUnit

Running a test case:

1 Get the component to a known state (set up).

2 Cause some event (the test case).

3 Check the behaviour.
• Record pass/fail
• Track statistics

• Typically we want to do a lot of test cases so it makes sense
to automate.

• Test cases are mostly similar in structure, so we can generalize
them.



Verification Testing Test Driven Development Testing with JUnit

JUnit

• JUnit is a framework for writing repeatable tests.

• classes for structuring test cases.

• runners to run test cases and collect statistics.
• junit.textui.TestRunner – Text based
• junit.swingui.TestRunner – Swing based
• junit.awtui.TestRunner – AWT based

• Normally used by extending TestCase with specifics for
testing a particular class/system/component.



Verification Testing Test Driven Development Testing with JUnit

Test Fixture

• Usually some set of test cases operate on a similar set of
objects — the test fixture.

• Fixture is implemented by member variables of extension
(subclass) of junit.framework.TestCase.

• Override two methods:
• protected void setUp() — initialize fixture prior to each

test case.
• protected void tearDown() — clean up fixture after each

test case.



Verification Testing Test Driven Development Testing with JUnit

Test Cases

• By default, methods named testSomething are test cases.

• Write one method test. . . for each test case.

• Use assertXXX from junit.framework.Assert (a parent
of TestCase) to evaluate results.

• assertEquals
• assertTrue
• assertFalse
• assertSame
• assertNotSame
• fail — for when you know a test has failed.



Verification Testing Test Driven Development Testing with JUnit

Test Suite

• To run a group of tests together, create a test suite.

• Simplest to simply implement:

public static Test suite() {
return new TestSuite(YourTestClass.class);

}

• Will form test suite containing all methods that start with
“test”.

• Can also use no-argument constructor and explicitly add tests
with addTest.



Verification Testing Test Driven Development Testing with JUnit

Design of JUnit



Verification Testing Test Driven Development Testing with JUnit

References

There’s lots of info at http://www.junit.org, including:

Kent Beck and Erich Gamma.
JUnit A Cook’s Tour, 2004.

Kent Beck and Erich Gamma.
JUnit Cookbook, 2004.


	Verification
	Testing
	Test Driven Development
	Testing with JUnit

