
Quick intro to Subversion

T. S. Norvell and D. K. Peters
Engr 7893. Memorial Unversity of Newfoundland

September 7, 2008

1 What are Subversion and TortoiseSVN

Subversion (svn) is a revision control system. It can track changes to the files in your project
and inform you of conflicts created when two developers make changes to the same file. We
are running Subversion on tera.mun.ca, where it maintains a “repository” containing all
source code that you submit to it.

How does Subversion help? Consider the following scenarios.1

• Akbar has just written a class. Jeff needs this class before he can complete his coding.
Akbar could email the code to Jeff and all the other members of the team. This results
in a lot of email and a lot of duplicated work as all the team members try to keep their
working copies in sync. With Subversion, Akbar submits his completed class to the
repository and all the other team members can easily synchronize their copies.

• Akbar and Jeff change different parts of file Navigation.java. Akbar could email his
copy to Jeff who looks at the differences and produces a file reflecting both changes.
Then Jeff emails this merged copy to all other team members. This requires Jeff and
Akbar to be aware that they are both working on the same file at the same time. With
Subversion, Jeff and Akbar both update their working copies just before they submit
their changes to the repository and Subversion will automatically create a merged copy.

• Akbar and Jeff change the same part of the same file. In this case when the second
one updates prior to submiting his code he will be informed of the conflict and asked
to resolve it prior to submitting the code.

• Binky reports a bug in the released version. Akbar and Jeff are midway toward the
next release. While they can fix the bug, it will be months before they have a version
that is stable enough to release. With Subversion they can recreate the source code of
the last release version, make the fix there, and send a service pack to their customers.
They can also merge the change to the release version into their current version.

1A very good discussion of the basics of working with Subversion available at http://svnbook.red-
bean.com/en/1.4/svn.tour.html.

1

http://svnbook.red-bean.com/en/1.4/svn.tour.html
http://svnbook.red-bean.com/en/1.4/svn.tour.html

2 REPOSITORIES AND WORKING COPIES

• Akbar’s hard-disk crashes. With Subversion only changes made since the last time he
submitted changes to the repository are lost.

TorroiseSVN is a graphical user interface integrated with Windows Explorer that makes
the Subversion client easier to use on Windows platforms. There are similar applications
available on other operating systems (e.g., KDEsvn on Linux, and svnX on Mac). There
are also plugins that integrate subversion with most of the major Integrated Development
Environments (IDE).

2 Repositories and Working Copies

Figure 1: Repositories and Working Copies

When you use Subversion, the server keeps a copy, called a repository of all of your files
and the history of every change that has been made to them. From this repository the server
can produce any version of your files that has ever been checked in. Normally you want to
use the latest version, which is called the head.

To work with your files on a particular computer you must first set up a local copy,
known as the working copy, of some version (usually the most recent) of your repository.
The working copy is just a normal directory and you can have as many of them as you
need, including multiple copies on the same computer (just not in overlapping directory
hierarchies). You can also have working copies of sub-trees of a repository in different
locations (e.g., you could keep your java source working copy in a sub-directory of your
eclipse workspace, and design documents elsewhere).

Any changes made to the working copy aren’t reflected in the repository until you commit

them.

svnIntro.tex 2 2008-09-07 23:43:51Z (Rev. #458)

http://kdesvn.alwins-world.de/
http://www.apple.com/downloads/macosx/development_tools/svnx.html

3 COMMON PROCEDURES

3 Common procedures

3.1 Installing TortoiseSVN

Skip this step if TortoiseSVN is already installed.

• Obtain the appropriate TortoiseSVN installer from http://tortoisesvn.tigris.org/.

• Double click and follow the instructions. Reboot.

3.2 Getting a Working Copy

Before you can work with files in the repository, you must check out (svn checkout) a
working copy. In TortoiseSVN this is done as follows:

• Create a directory in which you will store the working copy.

• Navigate to the directory.

• Right-click and select “SVN Checkout.”

• For the repository enter svn://tera.engr.mun.ca/7893/teamN/ (replacing the last
part with your appropriate team name), click “Ok”.

• Enter your username and password.

3.3 Changes to the working copy

You can make changes to the files and directories now. Use whatever editor or other tools
are appropriate, depending on the files being edited.

After you add any files or directories you must tell svn that they should be added to
the repository and managed (svn add). In Tortoise SVN, right-click on the file and select
TortoiseSVN→add.

To delete a file or directory you must tell svn to delete it (svn delete. The file
is not actually removed from the repository, but it is marked so that it won’t be in-
cluded in later updates, and will be removed from other working copies upon update. Use
TortoiseSVN→delete.

3.4 Updating

From time to time you will want any changes that others have made to the repository
reflected in your working copy. To do this you must update your working copy (svn update).
In TortoiseSVN, right-click on the root directory of your working copy (or any particular file
or directory to do a partial update) and select TortoiseSVN→update.

In particular it is good practice to do an update before committing a block of changes
so that any changes made by other users are merged into your changes. This is not strictly
necessary since the commit will fail if any files that you have changed were changed by

svnIntro.tex 3 2008-09-07 23:43:51Z (Rev. #458)

http://tortoisesvn.tigris.org/

3 COMMON PROCEDURES

someone else, but it can prevent problems. In particular, if two users are modifying code
components where one depends on the other, it is possible for them to make incompatible
changes and for those to be overlooked

3.4.1 Conflicts

A conflict in svn terminology happens when two users modify the same part of the same
file. (Note: If they modify different parts of the same file then svn will merge the changes
together when the second user updates her working copy. This is not a conflict.)

If you have made changes that cause a conflict, the update command will tell you. Watch
for red lines like:
Conflicted someFileName

in the log window. Editing the file will show you where your changes conflict with others,
with lines that look like this:

<<<<<<< .mine

Here is a 2nd line inserted in the middle.

=======

Here is the second line inserted in the middle.

>>>>>>> .r126

This says that your working copy contains the lines between <<<<<<< .mine and =======

and the repository (in revision 126) has the lines between ======= and >>>>>>> .r126. Your
working copy will also contain three new files, as follows:
Extension Description
.mine Your working copy
.r125 The revision that you started from (rev. 125 in this case)
.r126 The current committed revision (rev. 126 in this case)

You must make your working copy right, and then tell svn that you’ve resolved the
conflict (svn resolve or TortoiseSVN→Resolved ...). You can then commit the files
(note that since a commit is atomic, you must commit everything again).

Not all mutually incompatible changes are considered by svn to be conflicts. For example
suppose that a subroutine has been declared with declaration

int intpow(int exponent, int base)

Developer A and B start the day by updating their working copies. Both start with
the same source. Developer A changes the order of the parameters in the declaration and
definition. Developer B writes several calls to the subroutine using the original order. A
updates (there is no change) and commits (see next section). Now B updates (getting A’s
changes) and commits. Svn will not notice any problem. However svn’s definition of a
conflict is good enough for most purposes.

3.5 Committing

From time to time you will want to share changes that you have made to your fellow devel-
opers. It is a good idea to do this whenever you have made significant progress that they

svnIntro.tex 4 2008-09-07 23:43:51Z (Rev. #458)

4 TYPICAL USE OF SUBVERSION

Figure 2: Typical svn usage

may benefit from. It is a bad idea to do this when your code does not compile or is otherwise
in rough shape.

• First update your own working copy. Resolve any conflicts.

• Right click the root of your working copy.

• Select SVN Commit

• Enter a log message describing the nature of the work you have done since your last
commit.

4 Typical use of Subversion

Figure 2 shows typical usage of subversion. It is a good idea to break the work you have to
do into small tasks each of which take the system from a stable point to a stable point. For
example, adding one feature might be a task. Fixing one bug might be a task. Each task
takes you once around the cycle.

svnIntro.tex 5 2008-09-07 23:43:51Z (Rev. #458)

5 BUT WAIT THERE’S MORE

The first update ensures that you are working on the most recent version of the system,
that is that you have changes made by your teammates. After updating you complete the
task.

The second update, right before the commit, is a good idea for several reasons. First it
alerts you to any conflicts before you commit. Second, it will list all the files that you’ve
modified, which reminds you of what you’ve done. Third, it lets you obtain any changes
made by your colleagues while you’ve been working on the task, so you can then test your
work with the most up-to-date versions of all files. I often run all unit tests right before and
after doing the second update.

It is a bad idea to commit when the system will not compile. This tends to annoy your
colleagues.

A common mistake with revision control is to forget to add a file that you’ve created.
This typically results in a system that compiles for you, but no one else. Before you commit,
make sure all new files have been added.

5 But Wait There’s more

The above only scratches the surface of what you can do with Subversion and TortoiseSVN.
You can compare your working version of a file with the repository version (diff); you can
obtain the history of changes to a file (log); you can inform others of your intention to
edit; you can have svn email you when someone has done a commit; you can recreate earlier
versions of the module; you can create branches that represent parallel versions of the module;
and so on.

For more information see the documentation at http://subversion.tigris.org/.
A free book on subversion is available at http://svnbook.red-bean.com/en/1.4/index.html.
No revision control system will replace communication between developers and careful

project organization. Make sure that you all know what the other developers are doing (or
at least which parts of the source they are working on).

svnIntro.tex 6 2008-09-07 23:43:51Z (Rev. #458)

http://subversion.tigris.org/
http://svnbook.red-bean.com/en/1.4/index.html

	What are Subversion and TortoiseSVN
	Repositories and Working Copies
	Common procedures
	Installing TortoiseSVN
	Getting a Working Copy
	Changes to the working copy
	Updating
	Conflicts

	Committing

	Typical use of Subversion
	But Wait There's more

