
Name: Student #:

Engineering 8893
Concurrent Programming

Final Exam
Dr. D. K. Peters
April 15, 2002

Instructions: Answer all questions. Write your answers on this paper. This is an closed
book test, no textbooks, notes, calculators or other aids are permitted.
Total points: 100

1. [12 points] Consider the following java classes, which implement a proposed solution to the
critical section problem. You may assume that main creates one instance of SharedVars
and n Threads, each of which runs an instance of Proc, all of which reference the same
SharedVars. The criticalSection and nonCriticalSection functions are defined
elsewhere and may require a different amount of time for different processes and different
iterations. (The questions are on the following pages.)

class SharedVars
{

public boolean[] flag;
public int turn;
public SharedVars(int n) { flag = new boolean[n]; turn = 0; }

}

class Proc implements Runnable
{

private SharedVars v; private int id; private int n;
/**
* @param _v shared variables
* @param i my id
* @param _n number of processes
**/
Proc(SharedVars _v, int i, int _n)

{ v = _v; id = i; n = _n; }

public void run()
{

while (true) {
nonCriticalSection();
v.flag[id] = true;
v.turn = (id+1)%n;
while (v.turn != id && contention()) skip();
criticalSection();

8893 Final Exam 1 of 5 Revised: 2004.04.06 09 : 39

Name: Student #:

v.flag[id] = false;
}

}

private boolean contention()
{

boolean result = false;
for (int i = 0; i < n && !result; i++) {

if (i != id) {
result = v.flag[i];

}
}
return result;

}
private void skip()

{ try { Thread.sleep(50); } catch (InterruptedException e) {} }
}

For each of the following essential properties of a critical section solution, state if the
above solution satisfies the property or not, and justify your answer.

a) [3 points] Mutual exclusion.

b) [3 points] Absence of deadlock.

c) [3 points] Absence of unnecessary delays.

d) [3 points] Eventual entry.

2. [20 points] The Roller Coaster Problem. Suppose there are n passenger processes and
one car process. Passengers repeatedly wait and take rides in the car, which holds C

passengers, C < n. The car will only go around the tracks when it is full.

You are to develop a monitor to simulate the synchronization of this system. (Assume
that the passenger and car processes are defined elsewhere and obey the protocol de-
scribed below.) The monitor should have public methods as follows:

void takeRide(int id) which is called by a passenger process to indicate that it is
ready for another ride. It blocks until the passenger has been loaded into a car and
the (full) car has completed its trip.

void load() which is called by the car process to indicate that it is ready to begin
loading passengers. It should block until the car is full.

8893 Final Exam 2 of 5 Revised: 2004.04.06 09 : 39

Name: Student #:

void unload() which is called by the car process to indicate that it has completed the
trip (and passengers can now disembark).

a) [5 points] Give the class private variables and initial values or constructor implemen-
tation.

b) [15 points] Give the (pseudo-Java) implementations for the three methods.

3. [25 points] Throughout this course I have insisted that you not make any assumptions
about the fairness of a semaphore. This is what is known as a blocked-set semaphore—if
more than one process is waiting (i.e., blocked at a call to P), then, when it is released
(i.e., some process calls V), one of the waiting processes will be allowed to proceed, but we
don’t know which one. Another form of semaphore, known as a blocked-queue semaphore,
releases processes in FIFO order—the process that has been waiting the longest will be
released first. Fortunately, if we know how many processes will share the semaphore,
it is possible to implement a blocked-queue binary semaphore using several blocked-set
semaphores (as defined in the Semaphore class, with methods P and V) and the technique
of ‘passing the baton’.

a) [10 points] Give the pseudo-Java private variable declarations and constructor imple-
mentation for the blocked queue semaphore class, using the (blocked-set) Semaphore
class and the technique of ‘passing the baton.’ (Hint: The maximum number of pro-
cesses that will share an instance of FairSemaphore should be a parameter to the
constructor.)

class FairSemaphore {

b) [15 points] Give a pseudo-Java implementation of the class methods P and V, and any
private methods you choose to use. (Hint: The processes may pass their process Id
as a parameter to one or both of these. You may assume that the process Ids are in
a reasonable range.)

4. [10 points] Assume there are three symmetric processes, each having a local array of
integers, each of which is sorted in non-decreasing order. Assume also that at least one
value is common to all three arrays. We would like to find the smallest value that is in
all three arrays. The processes are arranged in a ring, and initialized so that the local
variables left and right are bi-directional channels for asynchronous message passing
(using methods “void send(int m)” and “int receive()”) to each neighbour. Each
message can be only a single integer.

Give a pseudo-java implementation of the processes (i.e., the run method) so that they
interact until each has determined the smallest common value. You may neglect Channel
set-up and closing.

8893 Final Exam 3 of 5 Revised: 2004.04.06 09 : 39

Name: Student #:

class Looker implements Runnable
{

private Channel left; // AMP with left neighbour
private Channel right; // AMP with right neighbour
private int[] numbers; // the values to search,

// (A)i.0 <= i < N-1 -> numbers[i+1] >= numbers[i]
private int N; // Number of values in numbers

// constructor omited

public void run()
{

5. [15 points] Consider the problem of modeling the motion of N perfectly elastic balls
bouncing about in a perfectly elastic box in a zero gravity vacuum (i.e., no friction). The
balls have some initial velocity and position, and change velocity when they collide with
the box walls or each other, so a sequential algorithm would be as follows:

1: loop
2: for each ball do
3: if in collision with other ball or wall then
4: Calculate new velocity
5: end if
6: Calculate position at t + δt
7: end for
8: end loop

Describe the structure (i.e., the distribution of computations and data over processes and
the communications and/or synchronization between processes) of at least two possible
distributed solutions to this problem. What are the advantages and disadvantages of
each?

6. [8 points] Consider the following set of periodic tasks, which share a single processor,
but otherwise do not interact. The deadline for completion of each request is the next
request for the same task.

Task Period Duration

1 120 30
2 200 20
3 30 10

a) [4 points] What relative priority assignment will be given to these processes under

8893 Final Exam 4 of 5 Revised: 2004.04.06 09 : 39

Name: Student #:

rate monotonic scheduling?

b) [4 points] Is this a feasible schedule? Justify your answer.

8893 Final Exam 5 of 5 Revised: 2004.04.06 09 : 39

