
Instruction Set Architectures Memory Addressing MIPS Compilers

Engineering 9859
CoE Fundamentals — Computer Architecture

Instruction Set Principles

Dennis Peters1

Fall 2007

1Based on notes from Dr. R. Venkatesan



Instruction Set Architectures Memory Addressing MIPS Compilers

RISC vs. CISC

• Complex Instruction Set Computers (CISC) have 1000s of
instructions.

• Reduced Instruction Set Computers (RISC) designed to
efficiently execute about 100 instructions.

• Most modern processors have features of both RISC and CISC.

• Architects/designers should remember Amdahl’s law:
• Implement most frequently executed instructions efficiently in

hardware
• Some rarely executed instructions can even be microcoded.

• Simplicity and uniformity (consistency and orthogonality) in
architectural choices will lead to hardware that has a short
critical path (worst-case propagation delay), resulting in high
performance.



Instruction Set Architectures Memory Addressing MIPS Compilers

Classifying IS Architectures

Classify based on type of internal storage in processor:

Stack Operands implicitly on top of stack.

Accumulator One operand implicitly in the accumulator.

Register-memory Only explicit operands, one may be in memory.

Register-register/load-store Only explicity register operands.

Load-store is used for almost all new architectures since 1980.



Instruction Set Architectures Memory Addressing MIPS Compilers

Instruction Types

• Arithmetic & Logic (ALU) instructions
• Only register operands
• Register operands plus one immediate operand (with instn.)

• Memory access instructions: Load & Store

• Transfer of control instructions:
• branches and jumps that are conditional or unconditional,
• procedure calls, returns,
• interrupts,
• exceptions, traps, etc.

• Special instructions: flag setting, etc.

• Floating point instructions

• Graphic, digital signal processing (DSP) instructions

• Input / Output instructions: Memory-mapped I/O?

• Other instructions



Instruction Set Architectures Memory Addressing MIPS Compilers

Instruction Occurrence

ALU (incl. ALU immediates) 25–40%
Loads 20–30%
Stores 10–15%
Conditional branches 15–30%
others > 2%

• Data processing applications use loads and stores more
frequently than ALU instructions;

• numeric (scientific & engineering) applications use more ALU.

• Graphic processors, network processors, DSP, vector
coprocessors will have a different mix.



Instruction Set Architectures Memory Addressing MIPS Compilers

Word and Instruction Size

• General purpose CPUs are most commonly 32- or 64-bit word
based.

• Microcontrollers with 8-bit and 16-bit words are still common.

• Instruction size is variable or fixed.
• Fixed is common in high-performance processors.
• May be smaller than, equal to or larger than word size.

• Most GP CPUs use 64-bit words and 32-bit instructions.

• Very large instruction word (VLIW) processors are emerging.

• Memory access, especially writing, needs to be done one byte
(8 bits) at a time due to character data type — memory is
almost always byte-addressable even with larger word size.



Instruction Set Architectures Memory Addressing MIPS Compilers

Memory Organization

• Which bit is bit 0, lsb or msb? only a convention

• Every byte has unique address, so a word spans several
addresses.

• Example: 64-bit computer, word spans 8 addresses.
• Must be consecutive addresses.

• Which byte is LSB?
• Little endian — LSB is lowest address (little end).
• Big endian — LSB is highest address (big end).
• Also only a convention.

• Aligned or non-aligned memory access:
• Aligned: gaps in memory but fast and simple hardware.
• Non-aligned: efficient storage but complex and slow hardware.

• Most (but not all) modern processors restrict that the size of
all operands in ALU instructions be equal to the word size
again, for fast and simple hardware.



Instruction Set Architectures Memory Addressing MIPS Compilers

MIPS-64 Instruction Set

General Purpose Register (GPR), load-store architecture.

• 64-bit word, 32-bit instructions.

• 32 64-bit GPRs
• R0 is read-only contains 0.
• R31 is used with procedure calls.

• 32 32-bit Floating Point Registers (FPR) — accessed in pairs
as 64-bit entities..

• Instruction formats:

R-type 6-bit opcode, 3x5-bit register ids, 6-bit function.
• Used by ALU reg-reg instructions

I-type 6-bit opcode, 2x5-bit register ids, 16-bit disp./imm.
• Used by ALU reg-imm., load, store, conditional branch.

J-type used only for J and JAL



Instruction Set Architectures Memory Addressing MIPS Compilers

MIPS-64 Instruction Set (cont’d)

Load, store byte (8 bits), half word (16), word (32), double word
(64).

ALU add, subtract, AND, OR, XOR, shifts (all register-register).

FP single- or double-precision

• move, add, subtract, multiply, divide
• converstion to/from integer
• compare, test with branch (true/false)
• paired single — operate on two single-precision operands

in a single double-precision register.

Branch e.g.: BEQ, BNE, BNEQZ (always conditional).

Jump to name or using register, with or without link (return
address) in R31.



Instruction Set Architectures Memory Addressing MIPS Compilers

Sample Code

DADDI R1, R0, #8000 ;1000 words in array
here: SUBDI R1, R1, #8 ;Word has 8 bytes

LD R2, 30000(R1) ;Array starts at 30000
DADD R2, R2, R2 ;Double contents
SD 30000(R1), R2 ;Store back in array
BNEZ R1, here ;if not done, repeat

A 1000-word array, starting at the memory location 30000, is
accessed word-by-word (64-bit words), and the value of each word
is doubled.



Instruction Set Architectures Memory Addressing MIPS Compilers

Memory Access (for sample code)

• Approximately, 40% of all instructions executed access
memory.

• Without cache, memory is accessed 2 ∗ 1000 times during the
execution of the code.

• If L1 data cache is at least 64kB large, then there would be
only compulsory misses of the cache during the execution of
the code.



Instruction Set Architectures Memory Addressing MIPS Compilers

Compilers and Architecture

• Architectures must be developed in such a manner that
compilers can be easily developed.

• Architects should be aware of how compilers work.

• Compiler designers can design good products if they are aware
of the details of the architecture.

• Simple compilers perform table look-up.

• Optimizing compilers can come up with machine code that is
up to 50 times faster in execution.



Instruction Set Architectures Memory Addressing MIPS Compilers

Optimization

Optimization is done by compilers at various levels:

Front-end: transform to common intermediate form

High-level: loop transformations and procedure in-lining

Global optimizer: global and local optimizations; register allocation

Code generator: machine-dependent optimizations



Instruction Set Architectures Memory Addressing MIPS Compilers

Example: compiler & architecture

• A program execution entails running 10 million instructions.

• 45% of these are ALU instructions.

• An optimizing compiler removes a third of them.

• The processor runs at 1 GHz clock speed.

• Instruction execution times are:
• 1 cc for ALU,
• 2 cc for load & store that comprise 25% of all operations, and
• 3 cc for conditional branches.

• Compute MIPS ratings and CPU times before and after
optimization.



Instruction Set Architectures Memory Addressing MIPS Compilers

Example solution

Before optimization:
CPIavg =
MIPS =

CPU time =

After optimization:
CPIavg =
MIPS =

CPU time =


	Instruction Set Architectures
	Memory Addressing
	MIPS
	Compilers

