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RISC vs. CISC

• Complex Instruction Set Computers (CISC) have 1000s of
instructions.

• Reduced Instruction Set Computers (RISC) designed to
efficiently execute about 100 instructions.

• Most modern processors have features of both RISC and CISC.

• Architects/designers should remember Amdahl’s law:
• Implement most frequently executed instructions efficiently in

hardware
• Some rarely executed instructions can even be microcoded.

• Simplicity and uniformity (consistency and orthogonality) in
architectural choices will lead to hardware that has a short
critical path (worst-case propagation delay), resulting in high
performance.
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Classifying IS Architectures

Classify based on type of internal storage in processor:

Stack Operands implicitly on top of stack.

Accumulator One operand implicitly in the accumulator.

Register-memory Only explicit operands, one may be in memory.

Register-register/load-store Only explicity register operands.

Load-store is used for almost all new architectures since 1980.
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Instruction Types

• Arithmetic & Logic (ALU) instructions
• Only register operands
• Register operands plus one immediate operand (with instn.)

• Memory access instructions: Load & Store

• Transfer of control instructions:
• branches and jumps that are conditional or unconditional,
• procedure calls, returns,
• interrupts,
• exceptions, traps, etc.

• Special instructions: flag setting, etc.

• Floating point instructions

• Graphic, digital signal processing (DSP) instructions

• Input / Output instructions: Memory-mapped I/O?

• Other instructions
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Instruction Occurrence

ALU (incl. ALU immediates) 25–40%
Loads 20–30%
Stores 10–15%
Conditional branches 15–30%
others > 2%

• Data processing applications use loads and stores more
frequently than ALU instructions;

• numeric (scientific & engineering) applications use more ALU.

• Graphic processors, network processors, DSP, vector
coprocessors will have a different mix.
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Word and Instruction Size

• General purpose CPUs are most commonly 32- or 64-bit word
based.

• Microcontrollers with 8-bit and 16-bit words are still common.

• Instruction size is variable or fixed.
• Fixed is common in high-performance processors.
• May be smaller than, equal to or larger than word size.

• Most GP CPUs use 64-bit words and 32-bit instructions.

• Very large instruction word (VLIW) processors are emerging.

• Memory access, especially writing, needs to be done one byte
(8 bits) at a time due to character data type — memory is
almost always byte-addressable even with larger word size.
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Memory Organization

• Which bit is bit 0, lsb or msb? only a convention

• Every byte has unique address, so a word spans several
addresses.

• Example: 64-bit computer, word spans 8 addresses.
• Must be consecutive addresses.

• Which byte is LSB?
• Little endian — LSB is lowest address (little end).
• Big endian — LSB is highest address (big end).
• Also only a convention.

• Aligned or non-aligned memory access:
• Aligned: gaps in memory but fast and simple hardware.
• Non-aligned: efficient storage but complex and slow hardware.

• Most (but not all) modern processors restrict that the size of
all operands in ALU instructions be equal to the word size
again, for fast and simple hardware.
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MIPS-64 Instruction Set

General Purpose Register (GPR), load-store architecture.

• 64-bit word, 32-bit instructions.

• 32 64-bit GPRs
• R0 is read-only contains 0.
• R31 is used with procedure calls.

• 32 32-bit Floating Point Registers (FPR) — accessed in pairs
as 64-bit entities..

• Instruction formats:

R-type 6-bit opcode, 3x5-bit register ids, 6-bit function.
• Used by ALU reg-reg instructions

I-type 6-bit opcode, 2x5-bit register ids, 16-bit disp./imm.
• Used by ALU reg-imm., load, store, conditional branch.

J-type used only for J and JAL
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MIPS-64 Instruction Set (cont’d)

Load, store byte (8 bits), half word (16), word (32), double word
(64).

ALU add, subtract, AND, OR, XOR, shifts (all register-register).

FP single- or double-precision

• move, add, subtract, multiply, divide
• converstion to/from integer
• compare, test with branch (true/false)
• paired single — operate on two single-precision operands

in a single double-precision register.

Branch e.g.: BEQ, BNE, BNEQZ (always conditional).

Jump to name or using register, with or without link (return
address) in R31.
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Sample Code

DADDI R1, R0, #8000 ;1000 words in array
here: SUBDI R1, R1, #8 ;Word has 8 bytes

LD R2, 30000(R1) ;Array starts at 30000
DADD R2, R2, R2 ;Double contents
SD 30000(R1), R2 ;Store back in array
BNEZ R1, here ;if not done, repeat

A 1000-word array, starting at the memory location 30000, is
accessed word-by-word (64-bit words), and the value of each word
is doubled.
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Memory Access (for sample code)

• Approximately, 40% of all instructions executed access
memory.

• Without cache, memory is accessed 2 ∗ 1000 times during the
execution of the code.

• If L1 data cache is at least 64kB large, then there would be
only compulsory misses of the cache during the execution of
the code.
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Compilers and Architecture

• Architectures must be developed in such a manner that
compilers can be easily developed.

• Architects should be aware of how compilers work.

• Compiler designers can design good products if they are aware
of the details of the architecture.

• Simple compilers perform table look-up.

• Optimizing compilers can come up with machine code that is
up to 50 times faster in execution.
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Optimization

Optimization is done by compilers at various levels:

Front-end: transform to common intermediate form

High-level: loop transformations and procedure in-lining

Global optimizer: global and local optimizations; register allocation

Code generator: machine-dependent optimizations
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Example: compiler & architecture

• A program execution entails running 10 million instructions.

• 45% of these are ALU instructions.

• An optimizing compiler removes a third of them.

• The processor runs at 1 GHz clock speed.

• Instruction execution times are:
• 1 cc for ALU,
• 2 cc for load & store that comprise 25% of all operations, and
• 3 cc for conditional branches.

• Compute MIPS ratings and CPU times before and after
optimization.
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Example solution

Before optimization:
CPIavg =
MIPS =

CPU time =

After optimization:
CPIavg =
MIPS =

CPU time =
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