
Cache Basics Cache Performance Memory Organization Virtual Memory

Engineering 9859
CoE Fundamentals — Computer Architecture

Memory Hierarchy Design

Dennis Peters1

Fall 2007

1Based on notes from Dr. R. Venkatesan



Cache Basics Cache Performance Memory Organization Virtual Memory

Speed of Memory vs CPU



Cache Basics Cache Performance Memory Organization Virtual Memory

Memory hierarchy – Why and How

• Memory is much slower than processor.

• Faster memories are more expensive.

• Larger memories are always slower (due to high decoding time
and other reasons).

• Therefore, hierarchy of memory:
• locate small but very fast memory (SRAM: L1 cache) very

close to processor.
• L2 cache will be larger and slower.
• Main memory is usually GBs large and are made up of

DRAMs: several nanoseconds.
• Secondary memory is on discs (hard disk, CD, DVD), are

hundreds of GBs large, and take milliseconds to access. Similar
to warehouse.

• CPU registers are the closest to CPU, but do not use memory
address they have separate ids.



Cache Basics Cache Performance Memory Organization Virtual Memory

Principle of Locality

• Instructions and data exhibit both spatial and temporal
locality:

Temporal locality: If a particular instruction or data item is
used now, there is a good chance that it will be used
again in the near future.

Spatial locality: If a particular instruction or data item is used
now, there is a good chance that the instructions or data
items that are located in memory immediately following
or preceding this item will soon be used.

• It is a good idea to move such instruction and data items that
are expected to be used soon from slow memory to fast
memory (cache).

• This is prediction, and therefore will not always be correct —
depends on the extent of locality.



Cache Basics Cache Performance Memory Organization Virtual Memory

Example: Speedup due to cache

Assume:

• 1 GHz processor (τ = 10−9),

• CPI = 1

• 10 ns memory

• 35% of executed instructions are load or store.

• Application runs 1 billion (109) instructions.

• Memory accesses = 1 per instruction + 1 for each load/store.

• Execution time = (1 + 1.35 ∗ 10) ∗ 109 ∗ 10−9 = 14.5 s

• What if all instructions & data are stored in a perfect cache
that operates within one clock cycle?

• Execution time = 109 ∗ 10−9 = 1 s.



Cache Basics Cache Performance Memory Organization Virtual Memory

Example (cont’d)

• Now assume cache hit rate of 90%

• Execution time = (1 + 1.35 ∗ 0.1 ∗ 10) = 2.35 s

• Typical cache hit rates are
• 95–99% for instructions.
• 75–90% for data.

• How do we design a better cache (or caches)?



Cache Basics Cache Performance Memory Organization Virtual Memory

von Neumann Architecture

• Memory holds instructions (in a sequence) and data,

• Memory items are not distinguished based on their contents
— any memory item is a string of bits.

• Most modern processors have instruction pipelines.

• Instruction storage exhibits stronger locality.

∴ we usually split the L1 cache into instruction cache (IC) and
data cache (DC) — know as the Harvard architecture.

• Typical IC or DC size is 8, 16, 32, 64 or 128 kB plus
overheads.



Cache Basics Cache Performance Memory Organization Virtual Memory

Block Placement

• Tape uses sequential access;

• RAM/ROM uses random access;

• Disc uses random/sequential access;

• Caches use associative access (i.e., uses a part of the
information to find the remaining).

Direct mapped Each block has only one place it can appear.

Fully associative Block can be placed anywhere in cache.

Set associative Block can be placed in a restricted set of places. n
blocks in a set = n way set associatve

The first two are special cases of set associative: Direct mapped =
one-way set associative, fully associative with m blocks = m-way
set associative.



Cache Basics Cache Performance Memory Organization Virtual Memory

Associative Access



Cache Basics Cache Performance Memory Organization Virtual Memory

Block Identification — How is a block found?

• Each cache block frame has tag that associates it with
memory blocks.

• valid bit identifies if a cache block frame contains a block
from memory.

• index bits: select one set.

• Fully-associative — no index bits.

• Direct mapped — largest index field, but only one comparison.

• Cache miss: no comparison succeeds

• Cache hit: one comparison succeeds, block identified.

• Block offest bits: select byte or word — not relevant to
hit/miss.



Cache Basics Cache Performance Memory Organization Virtual Memory

Block Replacement

Which block should be replaced on cache miss?

• Three strategies

Random: overwrite a random block in the set.
Least recently used (LRU): overwrite the block that has been

untouched the longest.
First in, first out: overwrite the oldest block.

• Not relevant to direct mapped. (Why?)



Cache Basics Cache Performance Memory Organization Virtual Memory

Write Strategy

Writing is more complicated than reading:

• block access cannot be concurrent with tag comparison

• write must only affect specified size

Need to update lower levels of cache and main memory whenever a
store instruction modifies DC.

Write hit the item to be modified is in DC:

Write through write to next level (as if no DC).
Write back set a dirty bit and update next level before

replacing this block.

Write miss the item to be modified is not in DC.

Write allocate exploit locality, load block into DC.
Write no-allocate don’t fetch the missing block.

Usually, write through and write no-allocate policies are used
together; write back and write allocate.



Cache Basics Cache Performance Memory Organization Virtual Memory

Example: Alpha 21264 2-way set-associative cache



Cache Basics Cache Performance Memory Organization Virtual Memory

Cache Size Example 1

Overheads: tag bits, valid bit, dirty bit(?)

• # address bits: 46

• block size: 64B

• 64kB 2-way IC/DC, DC uses write through, write no-allocate

• # block offset bits: 2o = block size ⇒ o = 6

• # index bits:

2i = #blocks =
cache size

block size ∗ assoc.
⇒ i = 9

(512 sets, 1024 blocks)

• tag bits: 46− (6 + 9) = 31

• Total IC/DC size:
64 ∗ 8 ∗ 1024 b + (31 + 1) ∗ 1024 b = 64kB + 4kB



Cache Basics Cache Performance Memory Organization Virtual Memory

Cache Size Example 2

• # address bits: 40

• block size: 32B

• 1MB L2 cache, 4-way set-associative uses write back & write
allocate

• # block offset bits: 5

• # index bits: 13 (8192 sets, 215 blocks)

• tag bits: 40− (5 + 13) = 22

• L2 cache size: 1MB + 22+1+1
8 ∗ 215 = 1MB + 96kB



Cache Basics Cache Performance Memory Organization Virtual Memory

Cache Performance

• Memory access time = hit time + miss rate * miss penalty

• To improve performance, i.e., reduce memory time, we need
to reduce:

• hit time,
• miss rate
• miss penalty.

• As L1 caches are in the critical path of instruction execution,
hit time is the most important parameter.

• When one parameter is improved, others might suffer



Cache Basics Cache Performance Memory Organization Virtual Memory

Misses

Compulsory miss:

• block has never been in cache (during this execution of a
program)

• always occurs on first access to a block

Capacity miss:

• block was in cache, but was discarded to make room for
other block

• reduces with cache size

Conflict miss:

• block discarded because too many map to same set
• reduces with level of associativity.



Cache Basics Cache Performance Memory Organization Virtual Memory

Cache Performance Example

• 5 GHz pipelined processor (τ = 0.2 ns);

• IC hits 98%;

• L1 read miss 10%, write miss 5%;

• 25% of all instructions are loads and 10% are writes.

• Fetching a block from L2 cache takes 40 clk. (8 ns)

• L2 misses 12%, with a penalty 25 ns (125 clk).

An L3 cache might improve the performance.



Cache Basics Cache Performance Memory Organization Virtual Memory

Typical Cache Structure

• Most general purpose computers today use
• CPU chips that have on-chip IC&DC,
• on-package L2 cache,
• and an L3 cache on the motherboard.

• Caches are also used in the sound card, video card and with
other special purpose hardware.



Cache Basics Cache Performance Memory Organization Virtual Memory

Main Memory Organizations



Cache Basics Cache Performance Memory Organization Virtual Memory

Memory Interleaving

• Access time = address transmit + decode + amplify + data
transmit.

• Decode is the largest component.

• In memory interleaved system, address is transmitted and
decode takes place commonly for all the banks;

• only data transmission occurs from each bank in a pipelined
fashion. e.g., 0.5 + 6.0 + 0.3 + 4*0.6 = 9.2 ns.



Cache Basics Cache Performance Memory Organization Virtual Memory

Virtual Memory

Relocatability programmer and compiler do not have to worry
about exact location of information. Use any addresses, and
leave it to loader at run time.

Security: Using extra bits, access of any information can be
regulated. Controlled sharing is possible.

Different size: virtual memory can be larger than real memory.
This is not the major reason nowadays.

Virtual address and Real Address ⇒ translation



Cache Basics Cache Performance Memory Organization Virtual Memory

Virtual Memory Structure

Three implementation techniques:

Paging: Fixed size blocks

• most common
• discussed in detail here.

Segmentation: Variable size blocks

• used in early Intel processors.

Hybrid: (paged segments) Segments are variable (integral) number
of pages.



Cache Basics Cache Performance Memory Organization Virtual Memory

Disk & Real memories

OS uses process identifier bits (PID or ASN) and thus permits the
same virtual addresses to be used by different processes.



Cache Basics Cache Performance Memory Organization Virtual Memory

Address Translation

• Page table is lookup table for mapping virtual page # to
physical address.

• Located in memory.

• Each instruction execution refers to memory ≈ 1.35 times, so
PT is in cache, called translation lookaside buffer (TLB).



Cache Basics Cache Performance Memory Organization Virtual Memory

Address Translation Cache: TLB

• Usually split as Instruction TLB (ITLB) and Data TLB
(DTLB).

• One level.

• When TLB misses, exception occurs and OS consults PT and
updated TLB.

• TLB takes care of protection.

• ITLB: 12 – 40 entries ⇒ 200B – 1kB.

• DTLB: 32 – 64 entries.

• Read-only, fully-associative.



Cache Basics Cache Performance Memory Organization Virtual Memory

TLB Example



Cache Basics Cache Performance Memory Organization Virtual Memory

Memory Access: TLB & Caches



Cache Basics Cache Performance Memory Organization Virtual Memory

Page Table Access



Cache Basics Cache Performance Memory Organization Virtual Memory



Cache Basics Cache Performance Memory Organization Virtual Memory

Summary

• Memory design is extremely important: hierarchical.

• Caches improve performance due to locality present in
instruction and data access.

• L1 cache design is important as it is on critical path; it is split
into IC & DC if processor is pipelined.

• L2 cache (mixed) will be larger and slower than L1;

• L3 cache will be larger and slower than L2, and

• main memory will be larger and slower than L3.

• Cache performance suffers when store is performed.

• Virtual memory is used for relocatability & protection.

• Page Tables are used for virtual to real page address
translation

• TLBs are caches for PT.


	Cache Basics
	Cache Performance
	Memory Organization
	Virtual Memory

