

e) When the speed of the vector hardware is doubled,

speedup =
$$\frac{1}{1 - 0.7 + \frac{0.7}{10 \times 2}} = 2.9851$$

 $2.985 = \frac{1}{1 - \text{percent vectorization} + \frac{\text{percent vectorization}}{10}}$

percent vectorization = 73.88 %

Then increase percentage = 73.88 % - 70 % = 3.88%

1.21

a) Acer Altos R510 Mk2 (3.0 GHz Intel Xeon processor, 2MB L2, 8 1 core, 1 chip, 1 core/chip(Hyper-Threading Technology Disabled) Frequency: 3.0 GHz Base: 1463

Acer Altos R510Mk2 (3.6 GHz Intel Xeon processor, 2MB L2) 1 core, 1 chip, 1 core/chip(Hyper-Threading Technology disabled) Frequency: 3.6 GHz Base: 1715

Acer Altos R510 Mk2 (3.8 GHz Intel Xeon processor, 2MB L2, 8 1 core, 1 chip, 1 core/chip(Hyper-Threading Technology Disabled) Frequency: 3.8 GHz Base: 1806

	3.0 GHz vs. 3.6 GHz	3.0 GHz vs. 3.8 GHz	3.6 GHz vs. 3.8 GHz
Speedup _{clock}	1.2	1.2667	1.0556
Speedup _{base}	1.1722	1.2344	1.0531

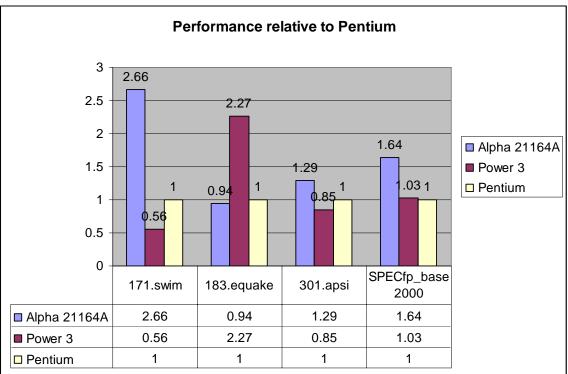
When other configurations are some, the clock speedup closely reflects benchmark speedup.

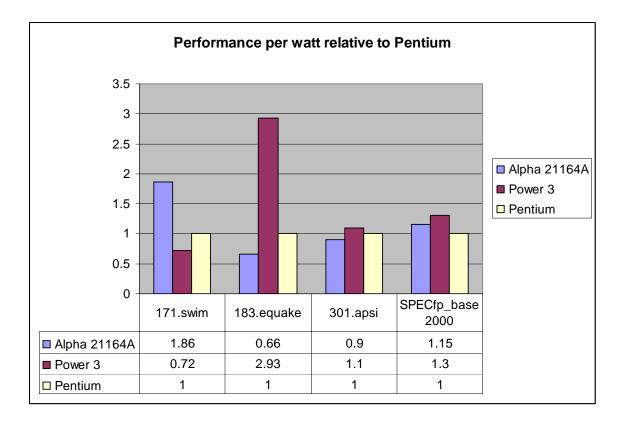
b)		
1	Load program	5 s
2	Invoke spell checking	5 s
3	Complete spell checking	1 s
4	Absorb the information	2 s
5	Initiate printing	5 s
6	Printing dialog to appear	2 s
7	Accept printing options	2 s
8	Printer to start	8 s
9	Printing	60 s

When the computer response time is less than 2 seconds, any computer response time is matched by double that amount of improvement in the human response time. Steps 3 and 6 are carried out by computer and their respective response time is equal to 2 seconds, which means the computer response time will be less

than 2 seconds after improvement. Correspondingly, the followed human response times (steps 4 and 7) will be improved by 2 times of the computer response time improvement.

	3.0 GHz vs. 3.6 GHz	3.0 GHz vs. 3.8 GHz	3.6 GHz vs. 3.8 GHz
Speedup _{clock}	1.2	1.2667	1.0556


Here give 3.0 GHz vs. 3.6 GHz as an example


Speedup_{clock} = 1.2 Time_step3 = 1 s Time_step4 = 2 s Computer_Improvement = 1 - 1/ speedup_{clock} = 0.1667 Human_Improvement = 2 * Computer_Improvement = 0.3334 Time_step3_after_improved = 1 * (1 - 0.1667) = 0.8333 Time_step4_ after_improved = 2 * (1 - 0.3334) = 1.3332

Time_step6 = 2 s Time_step7 = 2 s Computer_Improvement = $(2 - 2/\text{ speedup}_{clock}) / 2 = 0.1667$ Human_Improvement = 2 * Computer_Improvement = 0.3334 Time_step6_improved = 2 * (1 - 0.1667) = 1.6666Time_step7_ improved = 2 *(1 - 0.3334) = 1.3332Speedup_{wordprocessing} = 90 / (80 - 0.1667 - 2*2* 0.3334) = 1.1514

c) Relative permanence is a ratio. You need first choose a baseline computer, then the performance of your current computer divided by that of the baseline computer is the relative performance.

