a) Percentage =
$$\frac{30 \times 4\%}{30 \times 4\% + 2 \times 96\%}$$
 = 38.5%
b) Speedup = $\frac{30 \times 4\% + 2 \times 96\%}{(8 \times 4\% + 2 \times 96\%) \times (1 + 12\%)}$ = 1.24
c) Speedup = $\frac{(30 \times 4\% + 2 \times 96\%) \times (1 / freqency_initial)}{(8 \times 4\% + 2 \times 96\%) \times (1 / freqency_enhanced)}$ = 1
so $\frac{freqency_initial}{freqency_enhanced}$ = 1.3928
 $freqency_enhanced$ = 0.718 × $freqency_initial$
 $percentage_decrease$ = 1 - 0.718 = 28.2%
d) Speedup = $\frac{30 \times 4\% + 2 \times 96\%}{10 \times 4\% + 2 \times 96\%}$ = 1.345
or speedup = $\frac{1}{1 - 38.5\% + \frac{38.5\%}{30 / 10}}$ = 1.345

6 a) Percentage (store + load) = 26% + 10% = 36%. The application of new mode makes two instructions become one instruction and 10% of the store and load can use this new mode, therefore

The instruction ratio =
$$\frac{1 - (26\% + 10\%) \times 10\%}{1} = 96.4\%$$

b) Speedup =
$$\frac{1}{0.964 \times (1+5\%)} = 0.9879$$

the new mode is 21% lower than the original mode.