
Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Concurrent Architectures

Architectures can be classified based on multiplicity of instruction
and data streams (Flynn’s taxonomy):

• Single Instruction Stream, Single Data Stream (SISD)

• Serial processing

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Concurrent Architectures (cont’d)

• Single Instruction Stream, Multiple Data Stream (SIMD)
(Synchronous Mulitprocessor)

• All processors execute same instruction.
• Well suited to data-parallel algorithms (e.g., Array operations,

DSP)

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Concurrent Architectures (cont’d)

• MIMD Multi-Processor System

• Can use general purpose CPU.
• More complicated inter-processor communication.
• Processors communicate for synchronization.
• General purpose.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Memory Architectures for MIMD 1: Shared Memory

• All processors ‘see’ the same address space.

• Physically memory may be shared or distributed.

• More flexibility in programming (message passing can be
emulated).

• Uniform (symmetric) memory access (UMA):

• Bus or crossbar connection.
• Good for system with small number of processors (< 30).

• Non-uniform memory access (NUMA):

• Each processor has quicker access to some memory than
others.

• Tree-structured interconnection.
• Reduces congestion in interconnection network.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

UMA

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

NUMA (Example)

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Memory Architectures for MIMD 2: Distributed Memory

(also called message passing, multicomputers)

• Each processor has private memory.

• Communication by message passing.

Multicomputer: Distributed-memory multiprocessor with all
processors and memory co-located.

• also called a tightly coupled machine

• requires specialized interconnect for message passing

• Example: Transputer.

Cluster: Connected by LAN or WAN.

• Generic hardware.

• Network of workstations (NOW), Cluster of workstations
(COW) Beowulf Cluster.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Memory Architectures for MIMD 3: Distributed Shared
Memory

• Emulates Shared Memory on a Distributed Memory hardware.

• Shared memory is implemented in software by OS or by a
layer above the OS.

• Remote access is via messages sent over a network (e.g. an
ether net)

• Sharing may be of

• Pages — OS must be complicit
• Named variables — system calls to read and write
• Objects — operations are programmer defined.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Multiprocessors and Distributed Shared Memory Machines

(after Tanenbaum, Distributed Operating Systems)
Multiprocessor DSM

UMA NUMA Page Based Shared Vars Shared Object
Shared Virutal Addr. Space?

√ √ √

Remote access in hardware?
√ √

No
Ops converted to message by? MMU MMU OS OS Run time system
Transfer Medium Bus Bus Network Network Network
Operations R/W R/W R/W R/W General
Migration done by HW SW SW SW SW
Transfer unit Cache block Word Page Variable Object

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Atomic Actions

• In a shared-memory multiprocessor (even with a single
time-shared processor), the usual rules of programming logic
are not reliable.

• Consider two updates to the same variable executed by two
processors at about the same time:

P1 P2
x := x + 1 x := x + 1

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Atomic Actions (cont’d)

• Two things could happen:

P1 P2 P1 P2
LOAD x r1 LOAD x r1

LOAD x r1 ADD r1 #1
ADD r1 #1 or STORE r1 x

ADD r1 #1 LOAD x r1
STORE r1 x ADD r1 #1

STORE r1 x STORE r1 x

• By the normal rules of programming x should be increased by
2.

• We write 〈S〉 to mean that the statement S is executed (as
if) without interruption.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Memory Consistency

For efficiency, local copies of memory must be made.

• In UMAs and NUMAs this is in Caches.

• In DSM machines, 1 page may be replicated in several frames.

Consider a multiprocessor using standard write-back caches.

x , y := 0, 0; co
P0:
x := 1;
y := 2;

P1:
print y ;
print x ;

oc

Suppose the following sequence of actions:

P0 writes 1 to its cached x
P0 writes 2 to its cached y
P0’s cache writes 2 to global y
P1 executes, printing 2, 0

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Consistency Models 1: Strict consistency

• A consistency model specifies what guarantees the hardware
(or OS or run-time system) makes to the software about the
apparent ordering of operations.

• Strict consistency: Every read returns the value of the most
recent write.

• Implicit in this defn is the assumption of a global time so that
the “most recent” is well defined.

• This model can be achieved using synchronous hardware and a
global clock.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Resolution

Resolution of concurrent read and writes must be addressed

• CREW — Concurrent reads are allowed. Software must
ensure concurrent writes do not happen.

• CRCW — Concurrent writes are allowed. Resolution of
conflicting writes can be:

• common — All processors must write same value
• arbitrary — Any arbitrary choice is made.
• priority — Predictable choice is made.

Why not to implement strict consistency?

• All processors must be informed of all writes. Takes time &
bandwidth.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Consistency Models 2: Sequential consistency

Each process sees its own actions in process order; and
there exists an interleaving of actions consistent with every
process’s view.
For example. Assume x is initially 0.

P0: W(x)1

P1: R(x)1 R(x)1

Time: −→

P0: W(x)1

P1: R(x)0 R(x)1

Time: −→

Strict consistency does not allow behaviour on the right.
Sequential consistency allows either behaviour.
The behaviour on the right is consistent with an interleaving

P0: W(x)1

P1: R(x)0 R(x)1

Time: −→

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Sequential consistency example

(Example after Tanenbaum Distributed OSs)

a, b, c := 0, 0, 0;

co
P0:
a := 1;
x := 2b + c ;

P1:
b := 1;
y := 2c + a;

P2:
c := 1;
z := 2a + b;

oc

Many possible values for x , y , z . For example 0, 3, 3

P0: W(a)1 R(b)0 R(c)0
P1: W(b)1 R(c)1 R(a)1
P1 W(c)1 R(a)1 R(b)1
Time: −→

But x , y , z 6= 2, 2, 2. There is no interleaving that gives 2,2,2.
There are various weaker models of consistency that allow simpler
(and faster) implementation.
See Tanenbaum, Distributed Operating Systems, for more.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Cache coherence

• Ensures that if any cache contains a modified line, then no
two caches disagree as to its value.

• Stronger consistency model than sequential consistency, but
weaker than strict consistency

Example: MESI protocol for UMAs. Every cache sees every bus
transaction (Snooping).
Each cache line is in one of 4 states

• Modified. Line is not consistent with memory. No other
cache has the line.

• Exclusive. Line is consistent with memory. No other cache
has the line.

• Shared. Line is consistent with memory. Some other cache
has the line.

• Invalid. Line is not valid. (Line is not consistent with memory
and some other cache has the line.)

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

MESI (cont’d)

Bus transactions:

• BusRd. Request value put on bus.

• BusWr. Write line back to main memory.

• BusRdX. Read with intent to write.

E.g.

• When a processor does a write and the line’s state is not
already Modified, its cache initiates a BusRdX and changes
the state to Modified.

• When a cache sees a BusRdX on the bus (and has the line) it
changes the state to Invalid, while (possibly) flushing the
value of the line onto the bus.

The sequence of bus transactions imposes a single order on what
the processors see. Hence sequential consistency.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Network Topologies

Physically, each processor can only connect to a limited number of
other processors.

Others are also possible.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Network Topologies: Comparison

• n is # of processors

• diameter is the max # hops between nodes.

Connections per node Diameter
form n = 8 n = 4096 form n = 8 n = 4096

Fully connected n − 1 7 4095 1 1 1
2D Toroidal Grid 4 4 4 '

√
n 3 64

3D Toroidal Grid 6 6 6 ' 3
2

3√n 2 24
Tree b + 1 3 3 ' 2 logb n 5 23
Hyper-Cube lg n 3 12 lg n 3 12

• Trees have a bottleneck at the root, whereas hyper-cubes
avoid bottlenecks.

• Consider the number of links that must be deleted to partition
the network.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Broad Application Classes

Multithreaded Systems

• Divide overall (set of) problem(s) into (mostly) independent
tasks — makes programming less complicated.

• Usually shared memory.
• Examples: Web-browser: One thread handles GUI, while

“worker threads” obtain data from network, format displayed
data etc. Word-Processor: “worker threads” handle printing
spell checks.

Distributed Systems

• Data or application is physically distributed.

Parallel Computations

• Solve bigger problems faster by using more than one processor.
• Data parallel — each process does the same thing on part of

the data.
• Task parallel — different processes carry out different tasks.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Programming Patterns

• Iterative Parallelism (data parallel)

• Multiple loop iterations executed in parallel

• Recursive parallelism (data parallel)

• Recursive subroutine calls executed in parallel

• Producers and Consumers (task or data parallel)

• One process feeds output to the next

• Client/Server (task parallel)

• Clients make requests, servers respond.

• Peers

• Similar processes communicate directly to each other.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Iterative Parallelism

• Execute iterations of loops in parallel
• Typical for scientific computations.

Example: Matrix Multiplication
Compute a := b×c, where a, b and c are n by n matrices. (n2

inner products)

double a[n,n], b[n,n], c[n,n];

Sequential version:

for i := 0 to n − 1 do
for j := 0 to n − 1 do

c[i , j] := 0.0
for k := 0 to n − 1 do

c[i , j] := c[i , j] + a[i , k] ∗ b[k , j]
end for

end for
end for

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Aside: Independence

read set — the set of variables that an operation reads but does
not modify.
write set — the set of variables that an operation modifies (may
also read).
Operations can be executed in parallel if they are independent.
Not safe (in general) if both write, or one writes and the other
reads
Processes a and b are independent iff

Wa ∩ (Rb ∪Wb) = ∅ ∧ Wb ∩ (Ra ∪Wa) = ∅

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Parallel Matrix Multiplication

In the matrix multiplication algorithm each of the n2 iterations of
the dot product computation is independent of all the others. So:

co i := 0 to n − 1 . All rows
co j := 0 to n − 1 . All columns

c[i , j] := 0.0
for k := 0 to n − 1 do

c[i , j] := c[i , j] + a[i , k] ∗ b[k , j]
end for

oc
oc

But if there are less than n2 processors then the above is wasteful.
Having more processes than processors will slow down
computation.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Itterative Parallel Matrix Multiplication

If the number of processors P is less than or equal to n, we can
divide the work among P processes thus

process worker [w = 0 to P − 1]
int first := d(w × n)÷ Pe . first row of strip
int last := d((w + 1)× n)÷ Pe − 1 . last row of strip
for i := first to last do

for j := 0 to n − 1 do
c[i , j] := 0.0
for k := 0 to n − 1 do

c[i , j] := c[i , j] + a[i , k] ∗ b[k, j]
end for

end for
end for

end process

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Recursive Parallelism

Independent recursive procedures:
When a sequence of calls (recursive or not) are independent, they
can run in parallel.
Example: Adaptive Quadrature
Estimate the area under a curve, f (x), on an interval [left, right].

function double quad(double left, right, fleft, fright, area)
double mid := (left + right)/2
double fmid := f (mid)
double larea := (fleft + fmid) ∗ (mid − left)/2
double rarea := (fmid + fright) ∗ (right −mid)/2
if (|larea + rarea| − area) > ε then

larea := quad(left,mid , fleft, fmid , larea)
rarea := quad(mid , right, fmid , fright, rarea)

end if
return larea + rarea

end function

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Recursive Parallel Adaptive Quadrature

Since recursive calls only use local variables and value parameters,
we can do them in parallel.

function double quad(double left, right, fleft, fright, area)
double mid := (left + right)/2
double fmid := f (mid)
double larea := (fleft + fmid) ∗ (mid − left)/2
double rarea := (fmid + fright) ∗ (right −mid)/2
if (|larea + rarea| − area) > ε then

co
larea := quad(left,mid , fleft, fmid , larea)

||
rarea := quad(mid , right, fmid , fright, rarea)

oc
end if
return larea + rarea

end function

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Producers and Consumers (pipelines)

• Processes may act as filters — consuming output from
upstream process and producing for downstream.

• Example: Unix pipe.

sed -f Script $* | tbl | eqn | groff Macros -

Pipe acts as bounded FIFO queue.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Clients & Servers

• Dominant pattern for distributed systems.

• Distributed analog to procedure call.

• Examples: Remote file systems, http, ftp, telnet.

• Also OS kernels: Kernel is a set of kernel-mode threads that
services system calls on behalf of user-level processes.

• Servers may service multiple clients, possibly concurrently.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Simple multithreaded server pseudocode

process server [s := 1 to n]
while system is not shutdown do

await new client
loop

receive request from client
process request
send reply
if client request quit then

break
end if

end loop
clean up

end while
end process

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Peers

Similar distributed processes cooperate to accomplish a task.
Example: Distributed Matrix Multiplication
Assume an n by n matrix and n distributed workers.

process worker [i := 0 to n − 1]
double a[n] . row i of a
double b[n] . one column of b
double c[n] . row i of c (result)
receive a . row i from coordinator
receive b . col i from coordinator
int j := i . Inv: b holds column j of matrix B
repeat

c[j] := 0.0
for k := 0 to n − 1 do

c[j]+ = a[k] ∗ b[k]
end for
j := (j − 1)%n
if j 6= i then

send b to worker[(i + 1)%n]
receive b . col j

end if
until j == i
send i, c to coordinator

end process

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Peers (cont’d)

process coordinator
for i := 0 to n − 1 do

send A[i][∗] to worker[i]
end for
for j := 0 to n − 1 do

send B[∗][j] to worker[j]
end for
for i := 0 to n − 1 do

receive C [i][∗] from worker[i]
end for

end process

• First each row of A is sent to a worker.

• Each column of B is sent to a worker.

• The workers pass the columns of B among themselves (in a
ring) until each worker has seen all n columns of B.

• The rows of C are now sent from the workers to the
coordinator.

Connectivity required

• Workers in a (1-way) ring.

• All workers connected (2-way) to the coordinator.

Architectures Atomic Actions Memory Consistency Network Topologies Application Classes Patterns

Typical Applicability

Application Class
Programming Pattern MT Dist ‖ Comp.
Iterative Parallelism

√

Recursive parallelism
√

Producer/Consumer
√ √

Client/Server
√ √

Peers
√ √ √

Don’t take this too literally; there are exceptions.

	Architectures
	Memory Architectures for MIMD

	Atomic Actions
	Memory Consistency
	Consistency Models
	Cache coherence

	Network Topologies
	Network Topologies: Comparison

	Application Classes
	Patterns
	Iterative Parallelism

